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Focusing NLS and N-Solitons

The focusing Nonlinear Schrödinger equation is:

i
∂ψ

∂t
+

1

2

∂2ψ

∂x2
+ |ψ|2ψ = 0 .
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Focusing NLS and N-Solitons

The focusing Nonlinear Schrödinger equation is:
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∂ψ

∂t
+
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∂2ψ

∂x2
+ |ψ|2ψ = 0 .

The N -soliton is just the particular solution of this equation denoted ψ = ψN(x, t)

satisfying the initial condition:

ψN(x, 0) = N sech(x) , N = 1, 2, 3, . . . .
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Focusing NLS and N-Solitons

The focusing Nonlinear Schrödinger equation is:

i
∂ψ

∂t
+

1

2

∂2ψ

∂x2
+ |ψ|2ψ = 0 .

The N -soliton is just the particular solution of this equation denoted ψ = ψN(x, t)

satisfying the initial condition:

ψN(x, 0) = N sech(x) , N = 1, 2, 3, . . . .

This solution is a model for the effect of variation of amplitude on pulse propagation in

nonlinear fiber optics. It will serve in this talk as a basic example of the theory of the

semiclassical limit for the focusing NLS equation.
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Linear Algebra Algorithm for the N-Soliton

There is a general scheme for solving initial-value problems for the focusing NLS equation

(Zakharov & Shabat, 1972). For the N -soliton this method reduces to linear algebra

(Satsuma & Yajima, 1974), and ψN(x, t) can be obtained in closed-form.
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(Zakharov & Shabat, 1972). For the N -soliton this method reduces to linear algebra

(Satsuma & Yajima, 1974), and ψN(x, t) can be obtained in closed-form.

Begin with some “spectral data”:

λN,k := i(N − k − 1/2) , γN,k := (−1)
k+1

, k = 0, . . . , N − 1 .
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Linear Algebra Algorithm for the N-Soliton

There is a general scheme for solving initial-value problems for the focusing NLS equation

(Zakharov & Shabat, 1972). For the N -soliton this method reduces to linear algebra

(Satsuma & Yajima, 1974), and ψN(x, t) can be obtained in closed-form.

Begin with some “spectral data”:

λN,k := i(N − k − 1/2) , γN,k := (−1)
k+1

, k = 0, . . . , N − 1 .

Introduce an N -vector f with elements

fk := e
i(λN,kx+λ

2
N,kt)

2666666664
2i

γN,k
·

N−1Y
n=0

(λN,k − λ
∗
N,n)

N−1Y
n=0
n 6=k

(λN,k − λN,n)

3777777775

1/2

, k = 0, . . . , N − 1 .
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Linear Algebra Algorithm for the N-Soliton

Then build the Hermitian matrix B with elements

Bjk := −
1

2i
·

fjf
∗
k

λN,j − λ∗N,k
, j, k = 0, . . . , N − 1 ,

and let K := B∗B (∗ means conjugation, without transposition).
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Linear Algebra Algorithm for the N-Soliton

Then build the Hermitian matrix B with elements

Bjk := −
1

2i
·

fjf
∗
k

λN,j − λ∗N,k
, j, k = 0, . . . , N − 1 ,

and let K := B∗B (∗ means conjugation, without transposition).

Solve (independently for each x and t) the N ×N linear (Fredholm-type) system

(I + K)c = f∗ .
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Linear Algebra Algorithm for the N-Soliton

Then build the Hermitian matrix B with elements

Bjk := −
1

2i
·

fjf
∗
k

λN,j − λ∗N,k
, j, k = 0, . . . , N − 1 ,

and let K := B∗B (∗ means conjugation, without transposition).

Solve (independently for each x and t) the N ×N linear (Fredholm-type) system

(I + K)c = f∗ .

Then, the formula

ψN(x, t) = f†c ,

(† means conjugate-transpose) gives the N -soliton solution.
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Basic Properties of the N-Soliton

The most famous examples of the N -soliton solution correspond to small N :

Return to outline.
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• N = 2: ψN(x, t) is a “breather”.
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Basic Properties of the N-Soliton

The most famous examples of the N -soliton solution correspond to small N :

• N = 1: ψN(x, t) = eit/2 sech(x). This is the soliton.

• N = 2: ψN(x, t) is a “breather”.

But for more general N we can read off some features of the solution from the form of

the matrix elements and the initial condition:

• ψN(x, t) is periodic in t with a period independent of N .

• The amplitude |ψN(x, t)| scales like N .

• The smallest scale in x scales like ∆x ∼ N−1.

• The smallest scale in t scales like ∆t ∼ N−2.

Return to outline.
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The N-Soliton for N Large

The behavior of the N -soliton for large N is important because there is a natural

connection with the semiclassical limit of the focusing NLS equation:



Integrable Nonlinear Waves and Singular Asymptotics September 15, 2006

The N-Soliton for N Large

The behavior of the N -soliton for large N is important because there is a natural

connection with the semiclassical limit of the focusing NLS equation: setting

ψN =
1

ε
ψ̃ , t = εt̃ , ε =

A

N
,

and dropping tildes, the renormalized N -soliton satisfies:

iε
∂ψ

∂t
+
ε2

2

∂2ψ

∂x2
+ |ψ|2ψ = 0 , ψ(x, 0) = A sech(x) .

This problem is connected with the theory of pulse propagation in optical fibers with weak

anomalous dispersion.
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Application: Supercontinuum Generation

Optical Fiber with Small Dispersion

White Light Output

Monochromatic Input
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Application: Supercontinuum Generation

Optical Fiber with Small Dispersion

White Light Output

Monochromatic Input

Photonic Crystal Fiber
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Computation in the Semiclassical Limit
Generally, we would like to be able to analyze solutions of initial-value problems like

iε
∂ψ

∂t
+
ε2

2

∂2ψ

∂x2
+ |ψ|2ψ = 0 , ψ(x, 0) = A(x)e

iS(x)/ε
,

when ε is a small number. Some remarks about computational approaches for small ε:
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when ε is a small number. Some remarks about computational approaches for small ε:

• Direct numerical simulation very difficult:

? The problem is “stiff” when ε is small.
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Computation in the Semiclassical Limit
Generally, we would like to be able to analyze solutions of initial-value problems like

iε
∂ψ

∂t
+
ε2

2

∂2ψ

∂x2
+ |ψ|2ψ = 0 , ψ(x, 0) = A(x)e

iS(x)/ε
,

when ε is a small number. Some remarks about computational approaches for small ε:

• Direct numerical simulation very difficult:

? The problem is “stiff” when ε is small.

? Worse yet, the limiting problem is ill-posed: setting ρ := |ψ|2 and u :=

ε=(log(ψ)x), the initial-value problem becomes exactly,

∂ρ

∂t
+

∂

∂x
(ρu) = 0 ,

∂u

∂t
−
∂ρ

∂x
+ u

∂u

∂x
=
ε2

2

∂

∂x

 
1

2ρ

∂2ρ

∂x2
−
»

1

2ρ

∂ρ

∂x

–2
!

with initial data ρ(x, 0) = A(x)2 and u(x, 0) = S′(x). Setting ε = 0 yields a

Cauchy problem for an elliptic system. Reason: enhanced modulational instability.
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Computation in the Semiclassical Limit

• Use of N -soliton formula in reflectionless cases (e.g. A(x) = Asech(x) and S(x) ≡
0 with ε = A/N):

? Explicit formulae (from determinants) involve ∼ N ! terms.
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Computation in the Semiclassical Limit

• Use of N -soliton formula in reflectionless cases (e.g. A(x) = Asech(x) and S(x) ≡
0 with ε = A/N):

? Explicit formulae (from determinants) involve ∼ N ! terms.

? Numerical calculations, while attractive because errors don’t propagate, are hindered

by matrix condition numbers growing rapidly with N .
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• Use of N -soliton formula in reflectionless cases (e.g. A(x) = Asech(x) and S(x) ≡
0 with ε = A/N):

? Explicit formulae (from determinants) involve ∼ N ! terms.

? Numerical calculations, while attractive because errors don’t propagate, are hindered

by matrix condition numbers growing rapidly with N .

However difficult they are, numerical experiments for small ε have suggested remarkable

structure:
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by matrix condition numbers growing rapidly with N .

However difficult they are, numerical experiments for small ε have suggested remarkable

structure:

• Quasiperiodic microstructure on scales ∆x ∼ ∆t ∼ ε.
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Computation in the Semiclassical Limit

• Use of N -soliton formula in reflectionless cases (e.g. A(x) = Asech(x) and S(x) ≡
0 with ε = A/N):

? Explicit formulae (from determinants) involve ∼ N ! terms.

? Numerical calculations, while attractive because errors don’t propagate, are hindered

by matrix condition numbers growing rapidly with N .

However difficult they are, numerical experiments for small ε have suggested remarkable

structure:

• Quasiperiodic microstructure on scales ∆x ∼ ∆t ∼ ε.

• Asymptotically sharp “caustic curves” separate different phases.
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Large-N Analysis by Numerical Linear Algebra

References:

• (M & Kamvissis, 1998)

• (Lyng & M, 2007)

• (Bronski & Kutz, 1999)

• (Ceniceros & Tian, 2002)

• (Clarke & M, 2002)

(Latter three using direct numerical

simulation of the semiclassically

scaled PDE, also for more general

initial data.) Weak limits evidently

exist in oscillatory regions (bounded

amplitude).
0.0 0.5 1.0 1.5 2.0

x

0.0

0.5

1.0

1.5

2.0

t

N=5

161× 161 grid in [0, 2]2. Calculations done with 100 decimal digits.
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Large-N Analysis by Numerical Linear Algebra

References:

• (M & Kamvissis, 1998)

• (Lyng & M, 2007)

• (Bronski & Kutz, 1999)

• (Ceniceros & Tian, 2002)

• (Clarke & M, 2002)

(Latter three using direct numerical

simulation of the semiclassically

scaled PDE, also for more general

initial data.) Weak limits evidently

exist in oscillatory regions (bounded

amplitude).
0.0 0.5 1.0 1.5 2.0

x

0.0

0.5

1.0

1.5

2.0

t

N=10

161× 161 grid in [0, 2]2. Calculations done with 100 decimal digits.
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Large-N Analysis by Numerical Linear Algebra

References:

• (M & Kamvissis, 1998)

• (Lyng & M, 2007)

• (Bronski & Kutz, 1999)

• (Ceniceros & Tian, 2002)

• (Clarke & M, 2002)

(Latter three using direct numerical

simulation of the semiclassically

scaled PDE, also for more general

initial data.) Weak limits evidently

exist in oscillatory regions (bounded

amplitude).
0.0 0.5 1.0 1.5 2.0

x

0.0

0.5

1.0

1.5

2.0

t

N=20

161× 161 grid in [0, 2]2. Calculations done with 100 decimal digits.
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Large-N Analysis by Numerical Linear Algebra

References:

• (M & Kamvissis, 1998)

• (Lyng & M, 2007)

• (Bronski & Kutz, 1999)

• (Ceniceros & Tian, 2002)

• (Clarke & M, 2002)

(Latter three using direct numerical

simulation of the semiclassically

scaled PDE, also for more general

initial data.) Weak limits evidently

exist in oscillatory regions (bounded

amplitude).
0.0 0.5 1.0 1.5 2.0

x

0.0

0.5

1.0

1.5

2.0

t

N=40

161× 161 grid in [0, 2]2. Calculations done with 100 decimal digits.
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Large N Asymptotics: Some Natural Questions
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Large N Asymptotics: Some Natural Questions

• What is the mechanism that causes these caustic curves?
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• How many caustics are there?

• If there are an infinite number of caustics, do they all occur for finite t?

or
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Large N Asymptotics: Some Natural Questions

• What is the mechanism that causes these caustic curves?

• How many caustics are there?

• If there are an infinite number of caustics, do they all occur for finite t?

or

• Can the locations of the caustics be predicted?
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Large N Asymptotics: Some Natural Questions

• What is the mechanism that causes these caustic curves?

• How many caustics are there?

• If there are an infinite number of caustics, do they all occur for finite t?

or

• Can the locations of the caustics be predicted?

• Can the rescaled N -soliton be described asymptotically in between the caustics?
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Large N Asymptotics: Analysis

We need a way to organize a huge calculation to reveal the dominant contribution as

N →∞.



Integrable Nonlinear Waves and Singular Asymptotics September 15, 2006

Large N Asymptotics: Analysis

We need a way to organize a huge calculation to reveal the dominant contribution as

N →∞.

A method that works for analogous calculations in the Korteweg-de Vries (Lax &

Levermore, 1983) and defocusing NLS (Jin, Levermore, & D. McLaughlin, 1999)

contexts: maybe only certain terms in det(I + K) are important. Expand the Fredholm

determinant in principal minors:

det(I + K) = 1 +
X

S⊂{0,...,N−1}

det(KS) .

Elements of KS taken from rows and columns of K with indices in S. Minors det(KS)

are explicitly computed. If they are all positive, the sum is dominated by the largest term.

This leads to a variational characterization of the limit.
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Large N Asymptotics: Analysis

We need a way to organize a huge calculation to reveal the dominant contribution as

N →∞.

A method that works for analogous calculations in the Korteweg-de Vries (Lax &

Levermore, 1983) and defocusing NLS (Jin, Levermore, & D. McLaughlin, 1999)

contexts: maybe only certain terms in det(I + K) are important. Expand the Fredholm

determinant in principal minors:

det(I + K) = 1 +
X

S⊂{0,...,N−1}

det(KS) .

Elements of KS taken from rows and columns of K with indices in S. Minors det(KS)

are explicitly computed. If they are all positive, the sum is dominated by the largest term.

This leads to a variational characterization of the limit.

This method fails in the focusing case due to sign-indefinite minors. Cancellation. No

dominant term.
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Riemann-Hilbert Problem

Consider instead the origin of the linear algebra problem for the N -soliton: the

Riemann-Hilbert problem of inverse-scattering.
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Consider instead the origin of the linear algebra problem for the N -soliton: the

Riemann-Hilbert problem of inverse-scattering.

Begin with rescaled scattering data:

λN,k := iε(N − k − 1/2) , γN,k := (−1)
k+1

, k = 0, . . . , N − 1 .
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Riemann-Hilbert Problem

Consider instead the origin of the linear algebra problem for the N -soliton: the

Riemann-Hilbert problem of inverse-scattering.

Begin with rescaled scattering data:

λN,k := iε(N − k − 1/2) , γN,k := (−1)
k+1

, k = 0, . . . , N − 1 .

Set

ck(x, t) :=
1

γN,k
Res
λN,k

W (λ) , W (λ) := e
2i(λx+λ2t)/ε

N−1Y
n=0

λ− λ∗N,n

λ− λN,n
.
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Riemann-Hilbert Problem

Consider instead the origin of the linear algebra problem for the N -soliton: the

Riemann-Hilbert problem of inverse-scattering.

Begin with rescaled scattering data:

λN,k := iε(N − k − 1/2) , γN,k := (−1)
k+1

, k = 0, . . . , N − 1 .

Set

ck(x, t) :=
1

γN,k
Res
λN,k

W (λ) , W (λ) := e
2i(λx+λ2t)/ε

N−1Y
n=0

λ− λ∗N,n

λ− λN,n
.

The Riemann-Hilbert problem is: seek a 2× 2 matrix m(λ), λ ∈ C, with the following

properties:



Integrable Nonlinear Waves and Singular Asymptotics September 15, 2006

Riemann-Hilbert Problem

1. Rationality: m(λ) is a rational function of λ with simple poles confined to

{λN,n, λ∗N,n}
N−1
n=0 such that for k = 0, . . . , N − 1:

Res
λN,k

m(λ) = lim
λ→λN,k

m(λ)

»
0 0

ck(x, t) 0

–
,

Res
λ∗
N,k

m(λ) = lim
λ→λ∗

N,k

m(λ)

»
0 −ck(x, t)∗
0 0

–
.
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1. Rationality: m(λ) is a rational function of λ with simple poles confined to

{λN,n, λ∗N,n}
N−1
n=0 such that for k = 0, . . . , N − 1:

Res
λN,k

m(λ) = lim
λ→λN,k

m(λ)

»
0 0

ck(x, t) 0

–
,

Res
λ∗
N,k

m(λ) = lim
λ→λ∗

N,k

m(λ)

»
0 −ck(x, t)∗
0 0

–
.

2. Normalization: m(λ) → I as λ→∞.
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Riemann-Hilbert Problem

1. Rationality: m(λ) is a rational function of λ with simple poles confined to

{λN,n, λ∗N,n}
N−1
n=0 such that for k = 0, . . . , N − 1:

Res
λN,k

m(λ) = lim
λ→λN,k

m(λ)

»
0 0

ck(x, t) 0

–
,

Res
λ∗
N,k

m(λ) = lim
λ→λ∗

N,k

m(λ)

»
0 −ck(x, t)∗
0 0

–
.

2. Normalization: m(λ) → I as λ→∞.

From the solution of this Riemann-Hilbert problem,

ψ(x, t) = 2i lim
λ→∞

λm12(λ) .
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Principles of Riemann-Hilbert Analysis

One could solve for m(λ) by using a partial-fractions ansatz:

m(λ) = I +

N−1X
k=0

ak
λ− λN,k

+

N−1X
k=0

bk
λ− λ∗N,k

,

which leads directly to a linear algebra problem governing the matrix elements of the

coefficients ak and bk. This is essentially the same problem already considered. So that

would probably be a bad idea.
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Principles of Riemann-Hilbert Analysis

One could solve for m(λ) by using a partial-fractions ansatz:

m(λ) = I +

N−1X
k=0

ak
λ− λN,k

+

N−1X
k=0

bk
λ− λ∗N,k

,

which leads directly to a linear algebra problem governing the matrix elements of the

coefficients ak and bk. This is essentially the same problem already considered. So that

would probably be a bad idea.

Instead, follow a general procedure that can be viewed as a two-step process:
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Principles of Riemann-Hilbert Analysis: Step 1
Remove the poles. Interpolate residues inside a contour Σ. We get a new unknown M(λ)

defined for =(λ) > 0 by:

M(λ) := m(λ)

»
1 0

iW (λ)eπ(λ−iA)/ε 1

–
, inside Σ ,

and outside of Σ, M(λ) := m(λ). Then for =(λ) < 0, set M(λ) := σ2M(λ∗)∗σ2.

Ref: Kamvissis, K. McLaughlin, & M, Ann. Math. Stud., 2003
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Principles of Riemann-Hilbert Analysis: Step 1

Then, M(λ) has no poles at all. Instead it has a jump discontinuity across Σ ∪ Σ∗:

M+(λ) = M−(λ)

»
1 0

iS(λ)eF (λ)/ε 1

–
, λ ∈ Σ .

where F (λ) is a function with a branch cut in the interval [−iA, iA]:

F (λ) =2i(λx+ λ
2
t) + π(λ− iA) + 2iλ log(−iλ)

− i(λ− iA) log(−i(λ− iA))− i(λ+ iA) log(−i(λ+ iA)) .

The branch cut may be thought of as a “continuum limit” of the poles that used to be

present.

Ref: Kamvissis, K. McLaughlin, & M, Ann. Math. Stud., 2003
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Principles of Riemann-Hilbert Analysis: Step 1

Then, M(λ) has no poles at all. Instead it has a jump discontinuity across Σ ∪ Σ∗:

M+(λ) = M−(λ)

»
1 0

iS(λ)eF (λ)/ε 1

–
, λ ∈ Σ .

where F (λ) is a function with a branch cut in the interval [−iA, iA]:

F (λ) =2i(λx+ λ
2
t) + π(λ− iA) + 2iλ log(−iλ)

− i(λ− iA) log(−i(λ− iA))− i(λ+ iA) log(−i(λ+ iA)) .

The branch cut may be thought of as a “continuum limit” of the poles that used to be

present. Some notes:

• S(λ) ≈ 1 if ε is small and Σ avoids the poles of m(λ).

Ref: Kamvissis, K. McLaughlin, & M, Ann. Math. Stud., 2003
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Principles of Riemann-Hilbert Analysis: Step 1

Then, M(λ) has no poles at all. Instead it has a jump discontinuity across Σ ∪ Σ∗:

M+(λ) = M−(λ)

»
1 0

iS(λ)eF (λ)/ε 1

–
, λ ∈ Σ .

where F (λ) is a function with a branch cut in the interval [−iA, iA]:

F (λ) =2i(λx+ λ
2
t) + π(λ− iA) + 2iλ log(−iλ)

− i(λ− iA) log(−i(λ− iA))− i(λ+ iA) log(−i(λ+ iA)) .

The branch cut may be thought of as a “continuum limit” of the poles that used to be

present. Some notes:

• S(λ) ≈ 1 if ε is small and Σ avoids the poles of m(λ).

• The freedom of choice of Σ is like choice of contour in steepest descent for integrals.

But watch out if you want Σ to cross over the poles!

Ref: Kamvissis, K. McLaughlin, & M, Ann. Math. Stud., 2003
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Principles of Riemann-Hilbert Analysis: Step 2

Stabilize the problem. Consider g(λ) analytic in C \Σ∪Σ∗ with g(λ) → 0 as λ→∞
and g(λ) + g(λ∗)∗ = 0. Then a new unknown N(λ) is defined by

N(λ) := M(λ)

"
e−g(λ)/ε 0

0 eg(λ)/ε

#
.

The jump condition for N(λ) on Σ is now of the form

N+(λ) = N−(λ)

"
eiθ(λ)/ε 0

iS(λ)eφ(λ)/ε e−iθ(λ)/ε

#
, λ ∈ Σ ,

where θ(λ) := i(g+(λ)− g−(λ)) and φ(λ) := F (λ)− g+(λ)− g−(λ).

Fundamental principle: try to pick the scalar g(λ) and the contour Σ to make the jump

matrix as simple as possible in the limit ε→ 0. The identity matrix is the best possible

target. Piecewise constant is also good.

Ref: Kamvissis, K. McLaughlin, & M, Ann. Math. Stud., 2003
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Principles of Riemann-Hilbert Analysis: Target
A near-identity jump matrix is too much to hope for in this situation. So instead, we shall

try to choose g(λ) and the contour Σ so that Σ splits into two kinds of intervals:

• Bands: in which φ(λ) is an imaginary constant, and θ(λ) is real decreasing in the

positive direction.

• Gaps: in which θ(λ) is a real constant, and <(φ(λ)) < 0.

Ref: Kamvissis, K. McLaughlin, & M, Ann. Math. Stud., 2003
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Principles of Riemann-Hilbert Analysis: Target
A near-identity jump matrix is too much to hope for in this situation. So instead, we shall

try to choose g(λ) and the contour Σ so that Σ splits into two kinds of intervals:

• Bands: in which φ(λ) is an imaginary constant, and θ(λ) is real decreasing in the

positive direction.

• Gaps: in which θ(λ) is a real constant, and <(φ(λ)) < 0.

Then (skipping many steps) N(λ) can be approximately built (for small ε) from Riemann

Θ functions of the hyperelliptic surface with branch points at the band endpoints.
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Principles of Riemann-Hilbert Analysis: Target
A near-identity jump matrix is too much to hope for in this situation. So instead, we shall

try to choose g(λ) and the contour Σ so that Σ splits into two kinds of intervals:

• Bands: in which φ(λ) is an imaginary constant, and θ(λ) is real decreasing in the

positive direction.

• Gaps: in which θ(λ) is a real constant, and <(φ(λ)) < 0.

Then (skipping many steps) N(λ) can be approximately built (for small ε) from Riemann

Θ functions of the hyperelliptic surface with branch points at the band endpoints. There

are two important implications:

• The semiclassical asymptotics of ψ(x, t) in between the caustic curves are precisely

described by modulated multiphase waves written in terms of Θ, where the number of

phases is related to the genus of the surface.

• Caustic curves in the (x, t)-plane are genus transitions.

Ref: Kamvissis, K. McLaughlin, & M, Ann. Math. Stud., 2003
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Finding g(λ) and the Contour Σ

Analysis of caustics boils down to finding g(λ) and the contour Σ, and determining the

way the number of bands and gaps varies with x and t.

Ref: Kamvissis, K. McLaughlin, & M, Ann. Math. Stud., 2003
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Finding g(λ) and the Contour Σ

Analysis of caustics boils down to finding g(λ) and the contour Σ, and determining the

way the number of bands and gaps varies with x and t.

In some problems (e.g. zero-dispersion Korteweg-de Vries, orthogonal polynomials) the

conditions that determine g(λ) are encoded in a convex variational principle. Analogy:

electrostatic equilibrium in an external field. Genus corresponds to number of components

of support of equilibrium charge distribution.

Ref: Kamvissis, K. McLaughlin, & M, Ann. Math. Stud., 2003
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Finding g(λ) and the Contour Σ

Analysis of caustics boils down to finding g(λ) and the contour Σ, and determining the

way the number of bands and gaps varies with x and t.

In some problems (e.g. zero-dispersion Korteweg-de Vries, orthogonal polynomials) the

conditions that determine g(λ) are encoded in a convex variational principle. Analogy:

electrostatic equilibrium in an external field. Genus corresponds to number of components

of support of equilibrium charge distribution.

For focusing NLS, there is a variational formulation for g(λ), but the problem is

nonconvex. Instead, proceed by ansatz.

Ref: Kamvissis, K. McLaughlin, & M, Ann. Math. Stud., 2003
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Finding g(λ) and the Contour Σ

The ansatz-based method consists of the following steps:

1. Guess an even (due to conjugation symmetry) genus G.

Ref: Kamvissis, K. McLaughlin, & M, Ann. Math. Stud., 2003
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Finding g(λ) and the Contour Σ

The ansatz-based method consists of the following steps:

1. Guess an even (due to conjugation symmetry) genus G.

2. Then it turns out that for each configuration of 2G+2 complex endpoints (in conjugate

pairs), g(λ) is necessarily given by a well-defined Cauchy-type integral formula.

Ref: Kamvissis, K. McLaughlin, & M, Ann. Math. Stud., 2003
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Finding g(λ) and the Contour Σ

The ansatz-based method consists of the following steps:

1. Guess an even (due to conjugation symmetry) genus G.

2. Then it turns out that for each configuration of 2G+2 complex endpoints (in conjugate

pairs), g(λ) is necessarily given by a well-defined Cauchy-type integral formula.

3. Enforce on this formula the band/gap conditions on θ and φ. This has two effects:

• It implicitly determines the endpoints as functions of x and t.

• It determines certain inequalities that must be satisfied if the correct genus (for

some fixed x and t) is indeed G.

Ref: Kamvissis, K. McLaughlin, & M, Ann. Math. Stud., 2003
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Finding g(λ) and the Contour Σ

The problem of finding g(λ) can be approached computationally. By contrast with direct

numerical simulation of NLS for small ε, or use of the linear algebra algorithm for large

N , the conditions determining g are independent of any large or small parameter.

Return to outline.

Ref: Kamvissis, K. McLaughlin, & M, Ann. Math. Stud., 2003
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Finding g(λ) and the Contour Σ

The problem of finding g(λ) can be approached computationally. By contrast with direct

numerical simulation of NLS for small ε, or use of the linear algebra algorithm for large

N , the conditions determining g are independent of any large or small parameter.

This makes the problem of finding g(λ) especially attractive for numerical computation:

• Finding the endpoints from the nonlinear equations that implicitly define them as

functions of x and t amounts to root-finding.

Return to outline.
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Finding g(λ) and the Contour Σ

The problem of finding g(λ) can be approached computationally. By contrast with direct

numerical simulation of NLS for small ε, or use of the linear algebra algorithm for large

N , the conditions determining g are independent of any large or small parameter.

This makes the problem of finding g(λ) especially attractive for numerical computation:

• Finding the endpoints from the nonlinear equations that implicitly define them as

functions of x and t amounts to root-finding.

• Once the endpoints are known, the band intervals of Σ are determined by solving ODEs

to determine paths in the complex plane connecting pairs of endpoints.

Return to outline.
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Finding g(λ) and the Contour Σ

The problem of finding g(λ) can be approached computationally. By contrast with direct

numerical simulation of NLS for small ε, or use of the linear algebra algorithm for large

N , the conditions determining g are independent of any large or small parameter.

This makes the problem of finding g(λ) especially attractive for numerical computation:

• Finding the endpoints from the nonlinear equations that implicitly define them as

functions of x and t amounts to root-finding.

• Once the endpoints are known, the band intervals of Σ are determined by solving ODEs

to determine paths in the complex plane connecting pairs of endpoints.

• The (x, t)-plane can then be explored to search for genus transitions (caustics). Pick

x and t and shade the region of the complex λ-plane where the inequality <(φ) < 0

allows the gaps to reside. Topological changes in this region can indicate caustics.

Return to outline.

Ref: Kamvissis, K. McLaughlin, & M, Ann. Math. Stud., 2003
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The Genus Zero Region

The assumption of G = 0 can be proven to hold for |t| sufficiently small but independent

of ε. The analysis exactly at t = 0 requires a modification of this technique based on two

simultaneous interpolants of residues in step 1 (M, 2002).

Ref: Kamvissis, K. McLaughlin, & M, Ann. Math. Stud., 2003
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The Genus Zero Region

The assumption of G = 0 can be proven to hold for |t| sufficiently small but independent

of ε. The analysis exactly at t = 0 requires a modification of this technique based on two

simultaneous interpolants of residues in step 1 (M, 2002).

The primary caustic curve first appears (in the limit ε→ 0) at x = 0 for t = (2A)−1.

Ref: Kamvissis, K. McLaughlin, & M, Ann. Math. Stud., 2003
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The Genus Zero Region

The assumption of G = 0 can be proven to hold for |t| sufficiently small but independent

of ε. The analysis exactly at t = 0 requires a modification of this technique based on two

simultaneous interpolants of residues in step 1 (M, 2002).

The primary caustic curve first appears (in the limit ε→ 0) at x = 0 for t = (2A)−1.

A topological change (“pinch-off”) of the region where <(φ) < 0 leads to the birth of a

new band on Σ (and by symmetry a new band on Σ∗). The genus transition at the

primary caustic is from G = 0 to G = 2.

Ref: Kamvissis, K. McLaughlin, & M, Ann. Math. Stud., 2003
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The Genus Zero Region: Primary Caustic

The phase transition upon crossing the primary caustic. Shaded region: <(φ) < 0. Solid

curve: band. Complete Σ with a gap around poles (red) lying in shaded region.

Ref: Kamvissis, K. McLaughlin, & M, Ann. Math. Stud., 2003
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The Genus Zero Region: Primary Caustic

The phase transition upon crossing the primary caustic. Shaded region: <(φ) < 0. Solid

curve: band. Complete Σ with a gap around poles (red) lying in shaded region.
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The Genus Zero Region: Primary Caustic

The phase transition upon crossing the primary caustic. Shaded region: <(φ) < 0. Solid

curve: band. Complete Σ with a gap around poles (red) lying in shaded region.
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The Genus Zero Region: Primary Caustic

The phase transition upon crossing the primary caustic. Shaded region: <(φ) < 0. Solid

curve: band. Complete Σ with a gap around poles (red) lying in shaded region.
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The Genus Zero Region: Primary Caustic

The phase transition upon crossing the primary caustic. Shaded region: <(φ) < 0. Solid

curve: band. Complete Σ with a gap around poles (red) lying in shaded region.
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The Genus Zero Region: Primary Caustic

The phase transition upon crossing the primary caustic. Shaded region: <(φ) < 0. Solid

curve: band. Complete Σ with a gap around poles (red) lying in shaded region.
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The Genus Zero Region: Primary Caustic

The phase transition upon crossing the primary caustic. Shaded region: <(φ) < 0. Solid

curve: band. Complete Σ with a gap around poles (red) lying in shaded region.
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The Genus Zero Region: Primary Caustic

The phase transition upon crossing the primary caustic. Shaded region: <(φ) < 0. Solid

curve: band. Complete Σ with a gap around poles (red) lying in shaded region.
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The Genus Zero Region: Primary Caustic

The phase transition upon crossing the primary caustic. Shaded region: <(φ) < 0. Solid

curve: band. Complete Σ with a gap around poles (red) lying in shaded region.

Ref: Kamvissis, K. McLaughlin, & M, Ann. Math. Stud., 2003
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The Genus Zero Region: Supercontinuum Generation

In the genus zero region, the rescaled N -soliton (ψ(x, 0) = A sech(x)) is

ψ(x, t) = b0(x, t)e
−iκ0(x,t)/ε

+O(ε) ,
∂κ0

∂x
= 2a0(x, t) ,

where the endpoint is λ0 = a0 + ib0, determined implicitly from (see also Akhmanov,

Sukhorukov, and Khokhlov, 1965)

a
2
0 = t

2
b
4
0

A2 − b20 + t2b40
A2 + t2b40

, and x = −2ta0 + <
„

arcsinh

„
a0 + iA

b0

««
.

Ref: Lyng & M, CPAM, 2007
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The Genus Zero Region: Supercontinuum Generation

In the genus zero region, the rescaled N -soliton (ψ(x, 0) = A sech(x)) is

ψ(x, t) = b0(x, t)e
−iκ0(x,t)/ε

+O(ε) ,
∂κ0

∂x
= 2a0(x, t) ,

where the endpoint is λ0 = a0 + ib0, determined implicitly from (see also Akhmanov,

Sukhorukov, and Khokhlov, 1965)

a
2
0 = t

2
b
4
0

A2 − b20 + t2b40
A2 + t2b40

, and x = −2ta0 + <
„

arcsinh

„
a0 + iA

b0

««
.

Calculate the Fourier transform of b0e
−iκ0/ε at the (large) frequency ω = Ω/ε with Ω

held fixed. In the limit ε→ 0 this is a stationary phase integral. Stationary phase points

only exist for |Ω| < M(t), for some function M(t) independent of ε. Thus the power

spectrum is broad and flat (on average; there is a “ripple”) with width |ω| ∼ ε−1. Note:

spectral broadening consistent with supercontinuum generation occurs before wave

breaking (primary caustic).

Ref: Lyng & M, CPAM, 2007
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The Genus Zero Region: Supercontinuum Generation

This approach improves upon that of solving the “zero-dispersion” equation

iε
∂ψ

∂t
+ |ψ|2ψ = 0 , ψ(x, 0) = Asech(x) .

Return to outline.

Ref: Lyng & M, CPAM, 2007
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The Genus Zero Region: Supercontinuum Generation

This approach improves upon that of solving the “zero-dispersion” equation

iε
∂ψ

∂t
+ |ψ|2ψ = 0 , ψ(x, 0) = Asech(x) .

This equation has the global solution

ψ(x, t) = Asech(x)e
itA2sech2(x)/ε

whose Fourier spectrum also broadens to be of width ε−1 over propagation distances of

order 1. However, whenever the spectrum is this broad, the term ε2ψxx cannot be

neglected. Therefore this simple approach cannot be accurate.

Return to outline.

Ref: Lyng & M, CPAM, 2007
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The Genus Two Region

Numerical construction of the genus G = 2 ansatz beyond the primary caustic.
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ℜ (λ)

ℑ
(λ

)

x = 0.5   t = 0.6

Ref: Lyng & M, CPAM, 2007
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The Genus Two Region

Numerical construction of the genus G = 2 ansatz beyond the primary caustic.
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The Genus Two Region

Numerical construction of the genus G = 2 ansatz beyond the primary caustic.
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The Genus Two Region

Numerical construction of the genus G = 2 ansatz beyond the primary caustic.
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The Genus Two Region

Numerical construction of the genus G = 2 ansatz beyond the primary caustic.
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The Genus Two Region

At a time earlier than when numerics suggest the secondary caustic should occur, the

contour Σ collides with the interval containing the poles of m(λ). Our approximations

fail at this point as S(λ)− 1 is no longer small.

Ref: Lyng & M, CPAM, 2007
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The Genus Two Region

At a time earlier than when numerics suggest the secondary caustic should occur, the

contour Σ collides with the interval containing the poles of m(λ). Our approximations

fail at this point as S(λ)− 1 is no longer small. On the other hand, the equations

implicitly determining the endpoints admit continuation through the logarithmic branch

cut arising from the accumulation of poles. This suggests following the contour Σ through

the branch cut. How to justify?

Ref: Lyng & M, CPAM, 2007
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The Genus Two Region

At a time earlier than when numerics suggest the secondary caustic should occur, the

contour Σ collides with the interval containing the poles of m(λ). Our approximations

fail at this point as S(λ)− 1 is no longer small. On the other hand, the equations

implicitly determining the endpoints admit continuation through the logarithmic branch

cut arising from the accumulation of poles. This suggests following the contour Σ through

the branch cut. How to justify? We used a dual interpolant approach as in (M, 2002).

Ref: Lyng & M, CPAM, 2007
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The Genus Two Region

The new contour arc Σ′ is “all gap”. However, its inequality is different from the

inequality <(φ) < 0 that has to hold in gaps of Σ. We shade the new inequality in green.
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The Genus Two Region

The new contour arc Σ′ is “all gap”. However, its inequality is different from the

inequality <(φ) < 0 that has to hold in gaps of Σ. We shade the new inequality in green.
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The Genus Two Region

The new contour arc Σ′ is “all gap”. However, its inequality is different from the

inequality <(φ) < 0 that has to hold in gaps of Σ. We shade the new inequality in green.
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The Genus Two Region

The new contour arc Σ′ is “all gap”. However, its inequality is different from the

inequality <(φ) < 0 that has to hold in gaps of Σ. We shade the new inequality in green.
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The Genus Two Region

The new contour arc Σ′ is “all gap”. However, its inequality is different from the

inequality <(φ) < 0 that has to hold in gaps of Σ. We shade the new inequality in green.
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(λ
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x = 0.5   t = 1.55

Ref: Lyng & M, CPAM, 2007
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The Genus Two Region: Secondary Caustic

It has now been proved that

• The “pinched” genus two configuration corresponds to a degenerate genus four

configuration with a closed-up band on Σ′.

• As t is increased through the secondary caustic, the closed band on Σ′ opens up.

The dynamics immediately beyond the secondary caustic are described by Riemann Θ

functions of genus four.

• The ten equations implicitly governing the endpoints have a different form than had

the new band opened up on Σ. Nonetheless, the endpoints satisfy the same set of

Whitham (modulation) equations:

∂λk

∂t
+ ck(λ0, . . . , λ5)

∂λk

∂x
= 0 , k = 1, . . . , 5 .

Ref: Lyng & M, CPAM, 2007
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The Genus Two Region: Secondary Caustic

An important point: a natural approach one might adopt from the beginning of the

problem is to slightly modify the initial data so that for each ε sufficiently small the poles

making up the spectral data are “condensed” into a continuous branch cut, i.e. so that

S(λ) → 1 exactly.

This turns out to be a small modification right up until the secondary caustic, but any

theory that does not take into account the discrete nature of the spectrum will fail to

correctly capture the secondary caustic.

Return to outline.

Ref: Lyng & M, CPAM, 2007
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Generalizations

Going beyond the special initial data ψ(x, 0) = A sech(x) in the semiclassical analysis

of the focusing NLS equation requires asymptotic information about the spectrum of the

nonselfadjoint Zakharov-Shabat problem:

ε
du
dx

=

»
−iλ ψ(x, 0)

−ψ(x, 0)∗ iλ

–
u .
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Generalizations

Going beyond the special initial data ψ(x, 0) = A sech(x) in the semiclassical analysis

of the focusing NLS equation requires asymptotic information about the spectrum of the

nonselfadjoint Zakharov-Shabat problem:

ε
du
dx

=

»
−iλ ψ(x, 0)

−ψ(x, 0)∗ iλ

–
u .

State of current knowledge:

1. Tovbis & Venakides (2000) have generalized the hypergeometric analysis of Satsuma &

Yajima to potentials having the form ψ(x, 0) = A sech(x)eiS(x)/ε where S′(x) =

µ tanh(x), which have a “fast phase”.

2. Klaus & Shaw (2002) have proved that if ψ(x, 0) is real and “single-hump”, then

the discrete spectrum is purely imaginary and the number of eigenvalues is directly

proportional to the L1-norm.
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Generalizations

3. Bronski (1996) used numerics to show that for certain potentials of the form ψ(x, 0) =

A(x)eiS(x)/ε with A and S analytic, the discrete spectrum apparently accumulates

with some regularity on certain curves in the complex plane. The curves were tied to

analytic turning point theory in (M, 2001), and this theory is being strengthened in

current work of Servat and Tovbis.

4. Rigorous, eigenvalue-by-eigenvalue asymptotics, as well as spectrally uniform

asymptotics of the reflection coefficient for Klaus-Shaw potentials are the subject

of current work by Bronski, K. McLaughlin, and M.

5. The ultimate goal for this problem is to understand the semiclassical dynamics for

nonanalytic initial data.
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The Semiclassical Modified Nonlinear Schrödinger Equation

Generalization of the focusing nonlinear Schrödinger equation: let α ≥ 0, and consider

the initial-value problem

iε
∂ψ

∂t
+
ε2

2

∂2ψ

∂x2
+ |ψ|2ψ + iαε

∂

∂x
(|ψ|2ψ) = 0 , ψ(x, 0) = A(x)e

iS(x)/ε
.

In recent work with Jeffery DiFranco, we are beginning a study of this problem in the

ε→ 0 limit.
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Modulation Equations

One of the main reasons for our interest in this problem is summarized by the following

calculation.
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Modulation Equations

One of the main reasons for our interest in this problem is summarized by the following

calculation. Letting ρ := |ψ|2 and u := ε=(log(ψ)x), the initial-value problem

becomes, exactly,

∂ρ

∂t
+

∂

∂x

»
uρ+

3α

2
ρ

2

–
= 0 ,

∂u

∂t
+

∂

∂x

»
1

2
u

2 − ρ+ αuρ

–
=
ε2

2

∂

∂x

(ρ1/2)xx

ρ1/2
,

with initial data ρ(x, 0) = A(x)2 and u(x, 0) = S′(x).
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calculation. Letting ρ := |ψ|2 and u := ε=(log(ψ)x), the initial-value problem
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ρ1/2
,

with initial data ρ(x, 0) = A(x)2 and u(x, 0) = S′(x). Setting ε = 0 yields a Cauchy

problem for a quasilinear system.
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with initial data ρ(x, 0) = A(x)2 and u(x, 0) = S′(x). Setting ε = 0 yields a Cauchy

problem for a quasilinear system. This system is

• Elliptic if α2ρ+ αu− 1 < 0.
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Modulation Equations

One of the main reasons for our interest in this problem is summarized by the following

calculation. Letting ρ := |ψ|2 and u := ε=(log(ψ)x), the initial-value problem

becomes, exactly,

∂ρ

∂t
+

∂

∂x

»
uρ+

3α

2
ρ

2

–
= 0 ,

∂u

∂t
+

∂

∂x

»
1

2
u

2 − ρ+ αuρ

–
=
ε2

2

∂

∂x

(ρ1/2)xx

ρ1/2
,

with initial data ρ(x, 0) = A(x)2 and u(x, 0) = S′(x). Setting ε = 0 yields a Cauchy

problem for a quasilinear system. This system is

• Elliptic if α2ρ+ αu− 1 < 0.

• Hyperbolic if α2ρ+ αu− 1 > 0.

Therefore, modulational stability can be recovered with a focusing nonlinearity if α > 0 is

sufficiently large, and if u > 0 in the tails of ψ.
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Scattering Problem I: Bounds on Discrete Spectrum

The relevant spectral problem for inverse scattering is

ε
dv
dx

=

»
−2i(k2 − 1/4)/α 2kψ

−2kψ∗ 2i(k2 − 1/4)/α

–
v .
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Scattering Problem I: Bounds on Discrete Spectrum

The relevant spectral problem for inverse scattering is

ε
dv
dx

=

»
−2i(k2 − 1/4)/α 2kψ

−2kψ∗ 2i(k2 − 1/4)/α

–
v .

Suppose the initial data is of the form ψ(x) = A(x)eiS(x)/ε. Then, the discrete

eigenvalues k are confined to the strip |=(k)| ≤ supx∈RA(x), and furthermore, as

ε→ 0 they must lie in the “hyperbolic shadow” of the so-called turning point curve in

the k-plane given parametrically by the equations:

=(k)
2
=
α2

4
A(x)

2
, <(k)

2
=

1

4

“
1− αS

′
(x)− α

2
A(x)

2
”
, x ∈ R .
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Scattering Problem I: Bounds on Discrete Spectrum

Example: A(x) = sech(x) and S(x) = sech(x) tanh(x), α = 0.894.
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Scattering Problem I: Bounds on Discrete Spectrum

Example: A(x) = sech(x) and S(x) = sech(x) tanh(x), α = 0.805.
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Scattering Problem I: Bounds on Discrete Spectrum

Example: A(x) = sech(x) and S(x) = sech(x) tanh(x), α = 0.716.
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Scattering Problem I: Bounds on Discrete Spectrum

Example: A(x) = sech(x) and S(x) = sech(x) tanh(x), α = 0.626.
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Scattering Problem I: Bounds on Discrete Spectrum

Example: A(x) = sech(x) and S(x) = sech(x) tanh(x), α = 0.537.
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Scattering Problem I: Bounds on Discrete Spectrum

Example: A(x) = sech(x) and S(x) = sech(x) tanh(x), α = 0.447.

Note: λ = (2k − 1)/α is the spectral parameter for focusing NLS (α = 0).
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Scattering Problem I: Bounds on Discrete Spectrum

Example: A(x) = sech(x) and S(x) = sech(x) tanh(x), α = 0.358.

Note: λ = (2k − 1)/α is the spectral parameter for focusing NLS (α = 0).
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Scattering Problem I: Bounds on Discrete Spectrum

Example: A(x) = sech(x) and S(x) = sech(x) tanh(x), α = 0.268.

Note: λ = (2k − 1)/α is the spectral parameter for focusing NLS (α = 0).
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Scattering Problem I: Bounds on Discrete Spectrum

Example: A(x) = sech(x) and S(x) = sech(x) tanh(x), α = 0.179.

Note: λ = (2k − 1)/α is the spectral parameter for focusing NLS (α = 0).



Integrable Nonlinear Waves and Singular Asymptotics September 15, 2006

Scattering Problem I: Bounds on Discrete Spectrum

Example: A(x) = sech(x) and S(x) = sech(x) tanh(x), α = 0.089.

Note: λ = (2k − 1)/α is the spectral parameter for focusing NLS (α = 0).
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Scattering Problem II: Hypergeometric Potentials
Some history:

• In 1973, Satsuma and Yajima showed that for potentials of the form ψ(x) = Asech(x)

in the nonselfadjoint Zakharov-Shabat spectral problem (appropriate for focusing NLS):

ε
dv
dx

=

»
−iλ ψ

−ψ∗ iλ

–
v

all scattering data could be computed explicitly for all ε by converting the eigenvalue

problem into a hypergeometric equation.
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dv
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=
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−ψ∗ iλ

–
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all scattering data could be computed explicitly for all ε by converting the eigenvalue

problem into a hypergeometric equation.

• In 2000, Tovbis and Venakides generalized this result to potentials of the form

ψ(x) = Asech(x)eiS(x)/ε where S′(x) = µ tanh(x) and A and µ are independent

real parameters.
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Scattering Problem II: Hypergeometric Potentials
Some history:

• In 1973, Satsuma and Yajima showed that for potentials of the form ψ(x) = Asech(x)

in the nonselfadjoint Zakharov-Shabat spectral problem (appropriate for focusing NLS):

ε
dv
dx

=

»
−iλ ψ

−ψ∗ iλ

–
v

all scattering data could be computed explicitly for all ε by converting the eigenvalue

problem into a hypergeometric equation.

• In 2000, Tovbis and Venakides generalized this result to potentials of the form

ψ(x) = Asech(x)eiS(x)/ε where S′(x) = µ tanh(x) and A and µ are independent

real parameters.

It is easy to see that the Tovbis-Venakides result also holds if S′(x) = µ tanh(x) + δ

for any δ ∈ R.
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Scattering Problem II: Hypergeometric Potentials

We have found that potentials of the Tovbis-Venakides class are hypergeometric also for

the spectral problem of the modified focusing NLS, for arbitrary ε > 0 and α > 0.
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Scattering Problem II: Hypergeometric Potentials

We have found that potentials of the Tovbis-Venakides class are hypergeometric also for

the spectral problem of the modified focusing NLS, for arbitrary ε > 0 and α > 0. This

is a rich enough family to afford several interesting possiblilities:

• If αδ > 1, then there are no discrete eigenvalues. In this case,

? if |µ| < (αδ − 1)/α, then the modulation equations are hyperbolic for all x at

t = 0, while

? if |µ| > (αδ − 1)/α, then there exist x ∈ R for which the modulation equations

are elliptic at t = 0.
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Scattering Problem II: Hypergeometric Potentials

We have found that potentials of the Tovbis-Venakides class are hypergeometric also for

the spectral problem of the modified focusing NLS, for arbitrary ε > 0 and α > 0. This

is a rich enough family to afford several interesting possiblilities:

• If αδ > 1, then there are no discrete eigenvalues. In this case,

? if |µ| < (αδ − 1)/α, then the modulation equations are hyperbolic for all x at

t = 0, while

? if |µ| > (αδ − 1)/α, then there exist x ∈ R for which the modulation equations

are elliptic at t = 0.

• If αδ < 1, then regardless of the value of µ ∈ R there exist x ∈ R for which the

modulation equations are elliptic at t = 0. In this case,

? if |µ| < 2A
√

1− αδ then there are ∼ ε−1 discrete eigenvalues, while

? if |µ| > 2A
√

1− αδ then there are no discrete eigenvalues.
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The Semiclassical Sine-Gordon Equation

Consider the initial-value problem

ε
2

"
∂2u

∂t2
−
∂2u

∂x2

#
+ sin(u) = 0 , u(x, 0) = f(x) , ε

∂u

∂t
(x, 0) = g(x) .

In recent work with Robert Buckingham, we are beginning a study of this problem in the

ε→ 0 limit.
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Scattering Problem I: Gauge Transformations

This initial-value problem can be integrated with the help of the spectral problem

4ε
dv
dx

=

„
−iz

»
1 0

0 −1

–
+ iz

−1

»
cos(u) sin(u)

sin(u) − cos(u)

–
+ ε(ux + ut)

»
0 −1

1 0

–«
v .
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Scattering Problem I: Gauge Transformations

This initial-value problem can be integrated with the help of the spectral problem

4ε
dv
dx

=

„
−iz

»
1 0

0 −1

–
+ iz

−1

»
cos(u) sin(u)

sin(u) − cos(u)

–
+ ε(ux + ut)

»
0 −1

1 0

–«
v .

It might appear that solutions of this problem should have complicated singularities at

z = 0. That this is not the case can be seen more easily by making a certain gauge

transformation. Following Kaup (1975), consider a rotation of the vector v by an

x-dependent angle of u(x)/2:

u :=

»
cos(u/2) sin(u/2)

− sin(u/2) cos(u/2)

–
v .

Then, the scattering problem becomes

4ε
du
dx

=

„
iz
−1

»
1 0

0 −1

–
− iz

»
cos(u) − sin(u)

− sin(u) − cos(u)

–
− ε(ux − ut)

»
0 −1

1 0

–«
u .
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Scattering Problem I: Gauge Transformations

A gauge rotation by only half as much is useful for other purposes:

w :=

»
cos(u/4) sin(u/4)

− sin(u/4) cos(u/4)

–
v .

This yields the spectral problem in the symmetric gauge:

4ε
dw
dx

= −iz
»

cos(u/2) − sin(u/2)

− sin(u/2) − cos(u/2)

–
w

+ iz
−1

»
cos(u/2) sin(u/2)

sin(u/2) − cos(u/2)

–
w + εut

»
0 −1

1 0

–
w .

This spectral problem exhibits symmetry between z and z−1, and ux does not appear.
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Scattering Problem II: Hypergeometric Potentials

An important application of the symmetric gauge is its solution for all ε > 0 in the case

when ut ≡ 0 and

sin(u/2) = sech(x) and cos(u/2) = tanh(x)

in terms of hypergeometric function theory.
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Scattering Problem II: Hypergeometric Potentials

An important application of the symmetric gauge is its solution for all ε > 0 in the case

when ut ≡ 0 and

sin(u/2) = sech(x) and cos(u/2) = tanh(x)

in terms of hypergeometric function theory. Some notes:

• While the sine-Gordon equation can also be treated in characteristic coordinates using

the Zakharov-Shabat eigenvalue problem, this result does not follow from Satsuma-

Yajima or Tovbis-Venakides.
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Scattering Problem II: Hypergeometric Potentials

An important application of the symmetric gauge is its solution for all ε > 0 in the case

when ut ≡ 0 and

sin(u/2) = sech(x) and cos(u/2) = tanh(x)

in terms of hypergeometric function theory. Some notes:

• While the sine-Gordon equation can also be treated in characteristic coordinates using

the Zakharov-Shabat eigenvalue problem, this result does not follow from Satsuma-

Yajima or Tovbis-Venakides.

• The (∼ ε−1) discrete eigenvalues are all on the unit circle in the z-plane, uniformly

distributed with respect to =(z).
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Scattering Problem II: Hypergeometric Potentials

An important application of the symmetric gauge is its solution for all ε > 0 in the case

when ut ≡ 0 and

sin(u/2) = sech(x) and cos(u/2) = tanh(x)

in terms of hypergeometric function theory. Some notes:

• While the sine-Gordon equation can also be treated in characteristic coordinates using

the Zakharov-Shabat eigenvalue problem, this result does not follow from Satsuma-

Yajima or Tovbis-Venakides.

• The (∼ ε−1) discrete eigenvalues are all on the unit circle in the z-plane, uniformly

distributed with respect to =(z).

• The reflection coefficient vanishes identically when ε = 1/(2N + 1), for N =

0, 1, 2, 3, . . . . For such ε, numerical linear algebra may be used as for the N -soliton

of focusing NLS.
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Inverse Scattering: Reflectionless Hypergeometric Case
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Inverse Scattering: Reflectionless Hypergeometric Case

N=1
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Inverse Scattering: Reflectionless Hypergeometric Case

N=2
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Inverse Scattering: Reflectionless Hypergeometric Case

N=4
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Inverse Scattering: Reflectionless Hypergeometric Case

N=8
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Inverse Scattering: Reflectionless Hypergeometric Case

N=16
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Inverse Scattering: Reflectionless Hypergeometric Case

N=24
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Reflectionless Hypergeometric Case: Observations

Some notes:

• The fact that there is no “smooth” phase is to be expected: sine-Gordon has no family

of constant solutions. Instead of a smooth phase we see roll patterns characteristic of

genus 1 (cnoidal) waves. Think independent pendulum motions for ε small.

Return to outline.
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• The fact that there is no “smooth” phase is to be expected: sine-Gordon has no family

of constant solutions. Instead of a smooth phase we see roll patterns characteristic of

genus 1 (cnoidal) waves. Think independent pendulum motions for ε small.

• The complicated region emerging from x = t = 0 is more surprising.

? On the one hand, this looks like the caustic curves from focusing NLS and other

integrable semiclassical problems. One expects a genus transition and local behavior

given in terms of theta functions of some finite genus.

Return to outline.
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Some notes:

• The fact that there is no “smooth” phase is to be expected: sine-Gordon has no family

of constant solutions. Instead of a smooth phase we see roll patterns characteristic of

genus 1 (cnoidal) waves. Think independent pendulum motions for ε small.

• The complicated region emerging from x = t = 0 is more surprising.

? On the one hand, this looks like the caustic curves from focusing NLS and other

integrable semiclassical problems. One expects a genus transition and local behavior

given in terms of theta functions of some finite genus.

? On the other hand, the transition emerges from a part of space where the pendula are

nearly vertical (close to the separatrix). Viewing the ε2uxx term as a perturbation,

the system is susceptible to instability and perhaps homoclinic chaos.

Return to outline.
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Reflectionless Hypergeometric Case: Observations

Some notes:

• The fact that there is no “smooth” phase is to be expected: sine-Gordon has no family

of constant solutions. Instead of a smooth phase we see roll patterns characteristic of

genus 1 (cnoidal) waves. Think independent pendulum motions for ε small.

• The complicated region emerging from x = t = 0 is more surprising.

? On the one hand, this looks like the caustic curves from focusing NLS and other

integrable semiclassical problems. One expects a genus transition and local behavior

given in terms of theta functions of some finite genus.

? On the other hand, the transition emerges from a part of space where the pendula are

nearly vertical (close to the separatrix). Viewing the ε2uxx term as a perturbation,

the system is susceptible to instability and perhaps homoclinic chaos.

Thus what we have is an example of integrable homoclinic chaos!

Return to outline.
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Conclusion

• Caustics or phase transitions are a key feature of semiclassical nonlinear dynamics in

integrable wave equations.

Return to outline.
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• The focusing nonlinear Schrödinger equation exhibits catastrophic modulational

instability in the semiclassical limit. However, we are able to analyze the problem

subject to analytic initial data.
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integrable wave equations.

• The focusing nonlinear Schrödinger equation exhibits catastrophic modulational

instability in the semiclassical limit. However, we are able to analyze the problem

subject to analytic initial data.

• The modified nonlinear Schrödinger equation may be more relevant to applications,

and admits similar semiclassical analysis, possibly also for general initial data.
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Conclusion

• Caustics or phase transitions are a key feature of semiclassical nonlinear dynamics in

integrable wave equations.

• The focusing nonlinear Schrödinger equation exhibits catastrophic modulational

instability in the semiclassical limit. However, we are able to analyze the problem

subject to analytic initial data.

• The modified nonlinear Schrödinger equation may be more relevant to applications,

and admits similar semiclassical analysis, possibly also for general initial data.

• The initial-value problem for the semiclassical sine-Gordon equation in laboratory
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