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Background: The Nonlinear Schrödinger Equation

Let ε > 0 be a parameter. The nonlinear Schrödinger (NLS) equation is:

iε
∂φ

∂t
+
ε2

2

∂2φ

∂x2
+ κ|φ|2φ = 0 .
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Background: The Nonlinear Schrödinger Equation

Let ε > 0 be a parameter. The nonlinear Schrödinger (NLS) equation is:

iε
∂φ

∂t
+
ε2

2

∂2φ

∂x2
+ κ|φ|2φ = 0 .

Two flavors:

• κ = 1: Focusing case.

• κ = −1: Defocusing case.

This equation models propagation of pulses in nonlinear fiber optics. Dispersion effect is:

• weak if ε > 0 is small,

• anomalous if κ = 1,

• normal if κ = −1.
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Modulational Stability/Instability

Both flavors of the NLS equation have exact plane wave solutions:

φ = φ0(x, t) = Ae
i(kx−ωt)/ε

, ω =
1

2
k

2 − κ|A|2 .
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Modulational instability is an instability of plane waves to relatively long-wave (that is,

consisting of wavenumbers nearby to k) perturbations. To analyze set φ = φ0 · (1 + p)

and linearize in p.
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Modulational instability is an instability of plane waves to relatively long-wave (that is,

consisting of wavenumbers nearby to k) perturbations. To analyze set φ = φ0 · (1 + p)

and linearize in p. Solutions:

p(x, t) = (a± + ib±)e
i∆x/ε

e
σ±t/ε , σ± := −ik∆±

∆

2

p
4κA2 −∆2 .

Here ∆ is a relative wavenumber. The dichotomy of κ = ±1 is now clear:
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• κ = −1: <{σ±} = 0, ∀∆, k, and A. Unconditional modulational stability.



The Semiclassical Modified Nonlinear Schrödinger Equation: Facts and Artifacts May 23, 2007

Modulational Stability/Instability

Both flavors of the NLS equation have exact plane wave solutions:

φ = φ0(x, t) = Ae
i(kx−ωt)/ε

, ω =
1

2
k

2 − κ|A|2 .

Modulational instability is an instability of plane waves to relatively long-wave (that is,

consisting of wavenumbers nearby to k) perturbations. To analyze set φ = φ0 · (1 + p)

and linearize in p. Solutions:

p(x, t) = (a± + ib±)e
i∆x/ε

e
σ±t/ε , σ± := −ik∆±

∆

2

p
4κA2 −∆2 .

Here ∆ is a relative wavenumber. The dichotomy of κ = ±1 is now clear:

• κ = −1: <{σ±} = 0, ∀∆, k, and A. Unconditional modulational stability.

• κ = 1: <{σ±} 6= 0 if ∆2 < 4A2. Instability of each plane wave to “sideband”

perturbations, and hence unconditional modulational instability.
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Semiclassical Behavior

The modulational instability of the focusing NLS equation is enhanced when ε > 0 is

small:

• The width of the band of unstable wavenumbers is inversely proportional to ε. Stable

perturbations correspond only to waves of length O(ε).

• The exponential growth rate of the most unstable mode scales like ε−1.
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Semiclassical Behavior

The modulational instability of the focusing NLS equation is enhanced when ε > 0 is

small:

• The width of the band of unstable wavenumbers is inversely proportional to ε. Stable

perturbations correspond only to waves of length O(ε).

• The exponential growth rate of the most unstable mode scales like ε−1.

This fact, and recent interest in applications to “dispersion shifted” photonic crystal

optical fibers, motivates the study of the semiclassical Cauchy problem for the NLS

equation: set initial data in the form φ(x, 0) = A(x)eiS(x)/ε and analyze the solution

φ(x, t) in the limit ε ↓ 0. In particular, look for differences between focusing and

defocusing cases.
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Semiclassical Behavior: Modulation Equations

An old approach to Schrödinger equations originally advocated by Madelung is a

“quantum-corrected” hydrodynamical theory: define

ρ(x, t) := |φ|2 (density) , u(x, t) := ε=
∂

∂x
log(φ) (velocity) .

Then, the NLS equation becomes

∂ρ

∂t
+ u

∂ρ

∂x
+ ρ

∂u

∂x
= 0

∂u

∂t
− κ

∂ρ

∂x
+ u

∂u

∂x
=
ε2

2

 
1

2ρ

∂2ρ

∂x2
−
„

1

2ρ

∂ρ

∂x

«2
!
.

Initial data is independent of ε: ρ(x, 0) = A(x)2 and u(x, 0) = S′(x).
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Semiclassical Behavior: Modulation Equations

The formal limiting problem as ε ↓ 0 is the Cauchy problem for the system of modulation

equations:

∂

∂t

»
ρ

u

–
+

»
u ρ

−κ u

–
∂

∂x

»
ρ

u

–
= 0 , ρ(x, 0) = A(x)

2
, u(x, 0) = S

′
(x) .
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This quasilinear system is:

• Hyperbolic for κ = −1 (defocusing case): well-posed limiting Cauchy problem.
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• Hyperbolic for κ = −1 (defocusing case): well-posed limiting Cauchy problem.

• Elliptic for κ = 1 (focusing case): ill-posed limiting Cauchy problem, only solvable at

all for analytic initial data.
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Semiclassical Behavior: Modulation Equations

The formal limiting problem as ε ↓ 0 is the Cauchy problem for the system of modulation

equations:

∂

∂t

»
ρ

u

–
+

»
u ρ

−κ u

–
∂

∂x

»
ρ

u

–
= 0 , ρ(x, 0) = A(x)

2
, u(x, 0) = S

′
(x) .

This quasilinear system is:

• Hyperbolic for κ = −1 (defocusing case): well-posed limiting Cauchy problem.

• Elliptic for κ = 1 (focusing case): ill-posed limiting Cauchy problem, only solvable at

all for analytic initial data.

Hyperbolicity of modulation equations corresponds to modulational stability. Ellipticity

corresponds to (asymptotically catastrophic) modulational instability.
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Semiclassical Behavior: Rigorous Asymptotic Analysis

By viewing the NLS equation as a singular perturbation of the corresponding system

modulation equations, it is possible to prove by PDE techniques that the modulation

equations provide an accurate model for the semiclassical dynamics for 0 ≤ t ≤ T <∞,

T independent of ε:

• E. Grenier (1998) established this result for general defocusing semilinear Schrödinger

equations, where T corresponds to the shock time for the limiting (hyperbolic) system.

• P. Gérard (1993) established this result for general subcritical focusing semilinear

Schrödinger equations with analytic initial data, where T corresponds to the singularity

formation time for the limiting (elliptic) system.
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Semiclassical Behavior: Rigorous Asymptotic Analysis

Restricting to the integrable cases (one dimensional, cubic) and using the corresponding

machinery allows one to prove these results in a different way, and more significantly, to

obtain asymptotics for the solution beyond the time T at which the modulation equations

break down.

• The defocusing case was analyzed using the method of Lax and Levermore by S. Jin,

D. Levermore, and D. McLaughlin (1998).

• The focusing case was analyzed using the nonclassical steepest descent method of Deift

and Zhou by S. Kamvissis, K. McLaughlin, and M (2003). Other solutions not analyzed

in this paper were studied using similar techniques by A. Tovbis, S. Venakides, and

X. Zhou (2004). Note: analyticity of initial data is essential for this analysis, even

though it is not based on the Cauchy-Kovalevskaya solution of the elliptic modulation

equations.

Return to outline.
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The Modified Nonlinear Schrödinger Equation

For very short pulses, the focusing NLS equation should be corrected:

iε
∂φ

∂t
+
ε2

2

∂2φ

∂x2
+ |φ|2φ = −iαε

∂

∂x
(|φ|2φ) + α

′
ε
∂

∂x
(|φ|2) · φ+ iα

′′
ε
3∂

3φ

∂x3
.

• α ≥ 0: Nonlinear dispersion.

• α′ ≥ 0: Raman scattering.

• α′′ ∈ R: Higher-order linear dispersion.
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The Modified Nonlinear Schrödinger Equation

For very short pulses, the focusing NLS equation should be corrected:

iε
∂φ

∂t
+
ε2

2

∂2φ

∂x2
+ |φ|2φ = −iαε

∂

∂x
(|φ|2φ) + α

′
ε
∂

∂x
(|φ|2) · φ+ iα

′′
ε
3∂

3φ

∂x3
.

• α ≥ 0: Nonlinear dispersion.

• α′ ≥ 0: Raman scattering.

• α′′ ∈ R: Higher-order linear dispersion.

Generally the correction terms break the integrability. However the special case of

iε
∂φ

∂t
+
ε2

2

∂2φ

∂x2
+ |φ|2φ+ iαε

∂

∂x
(|φ|2φ) = 0

remains integrable but by different machinery for α > 0 than for α = 0. This equation

is the modified nonlinear Schrödinger (MNLS) equation.
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Lax Pair and Riemann-Hilbert Problem

For k ∈ C and a complex-valued function φ = φ(x, t), let

L :=

»
Λ 2ikφ

2ikφ∗ −Λ

–
, Λ := −

2i

α

„
k

2 −
1

4

«
,

B :=

»
iΛ2 + 2ik2|φ|2 −2kΛφ− kεφx − 2iαk|φ|2φ

−2kΛφ∗ + kεφ∗x − 2iαk|φ|2φ∗ −iΛ2 − 2ik2|φ|2
–
.

Then the simultaneous linear equations (Lax pair)

ε
∂v
∂x

= Lv and ε
∂v
∂t

= Bv

are compatible if and only if the zero curvature condition

ε
∂L
∂t

− ε
∂B
∂x

+ [L,B] = 0

holds, a condition equivalent to the MNLS equation for φ(x, t).
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Lax Pair and Riemann-Hilbert Problem

Given initial data φ = φ(x, 0) rapidly decreasing as |x| → ∞, one considers

={k2} = 0 and finds Jost matrices J±(x; k) satisfying

ε
dJ±
dx

= LJ± , lim
x→±∞

J±(x; k)e
−Λxσ3/ε = I .
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Lax Pair and Riemann-Hilbert Problem

Given initial data φ = φ(x, 0) rapidly decreasing as |x| → ∞, one considers

={k2} = 0 and finds Jost matrices J±(x; k) satisfying

ε
dJ±
dx

= LJ± , lim
x→±∞

J±(x; k)e
−Λxσ3/ε = I .

The scattering matrix S(k) is defined by

S(k) := J−(x; k)
−1J+(x; k) , ={k2} = 0 .
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Lax Pair and Riemann-Hilbert Problem

Given initial data φ = φ(x, 0) rapidly decreasing as |x| → ∞, one considers

={k2} = 0 and finds Jost matrices J±(x; k) satisfying

ε
dJ±
dx

= LJ± , lim
x→±∞

J±(x; k)e
−Λxσ3/ε = I .

The scattering matrix S(k) is defined by

S(k) := J−(x; k)
−1J+(x; k) , ={k2} = 0 .

Under suitable conditions on φ, S(k) is continuous with S(0) = I, and satisfies the

symmetries

S(−k) = σ3S(k)σ3 and S(k
∗
) = σ2S(k)

∗
σ2 .
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Lax Pair and Riemann-Hilbert Problem

Continuous spectral data: The reflection coefficient and jump matrix are defined as

r(k) := −
S12(k)

S22(k)
, V0(k) :=

»
1± |r(k)|2 r(k)

±r(k)∗ 1

–
, ±k2

> 0 .



The Semiclassical Modified Nonlinear Schrödinger Equation: Facts and Artifacts May 23, 2007

Lax Pair and Riemann-Hilbert Problem

Continuous spectral data: The reflection coefficient and jump matrix are defined as

r(k) := −
S12(k)

S22(k)
, V0(k) :=

»
1± |r(k)|2 r(k)

±r(k)∗ 1

–
, ±k2

> 0 .

Discrete spectral data: S11(k) has an analytic continuation to ={k2} < 0, where its

zeros (assumed simple) are eigenvalues kj. For each eigenvalue kj there is a

proportionality constant γj such that

j(1)+ (x; kj) = γjj
(2)
− (x; kj) .

Set

c
0
j :=

γj

S′11(kj)
.

Let D := {k1, . . . , kN} ∪ {k∗1, . . . , k
∗
N}.
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Lax Pair and Riemann-Hilbert Problem

Riemann-Hilbert problem: Seek a 2× 2 matrix-valued function M(k; x, t) of k ∈ C
with (x, t) ∈ R2 with the following properties:
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Lax Pair and Riemann-Hilbert Problem

Riemann-Hilbert problem: Seek a 2× 2 matrix-valued function M(k; x, t) of k ∈ C
with (x, t) ∈ R2 with the following properties:

Analyticity: M(k; x, t) is analytic for ={k2} 6= 0 and k 6∈ D and takes continuous

boundary values on the axes ={k2} = 0 from each of the four sectors of analyticity.

Moreover, M(k; x, t) is uniformly bounded for large k.
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Lax Pair and Riemann-Hilbert Problem

Riemann-Hilbert problem: Seek a 2× 2 matrix-valued function M(k; x, t) of k ∈ C
with (x, t) ∈ R2 with the following properties:

Jump Condition: Letting M±(k; x, t) denote the boundary value taken from the region

where ±={k2} < 0, the boundary values are related by

M+(k; x, t) = M−(k; x, t)e
(Λx+iΛ2t)σ3/εV0(k)e

−(Λx+iΛ2t)σ3/ε , ±k2
> 0 .
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Lax Pair and Riemann-Hilbert Problem

Riemann-Hilbert problem: Seek a 2× 2 matrix-valued function M(k; x, t) of k ∈ C
with (x, t) ∈ R2 with the following properties:

Singularities: M(k; x, t) has simple poles at the points of D. If kj ∈ D with

={kj} > 0 and <{kj} < 0, then with cj(x, t) := c0je
−2(Λjx+iΛ

2
j t)/ε, Λj := Λ(kj):

Res
k=±kj

M(k; x, t) = lim
k→±kj

M(k; x, t)

»
0 0

cj(x, t) 0

–

Res
k=±k∗

j

M(k; x, t) = lim
k→±k∗

j

M(k; x, t)

»
0 −cj(x, t)∗
0 0

–
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Lax Pair and Riemann-Hilbert Problem

Riemann-Hilbert problem: Seek a 2× 2 matrix-valued function M(k; x, t) of k ∈ C
with (x, t) ∈ R2 with the following properties:

Normalization at the Origin: The matrix M(k; x, t) is normalized in the sense that

lim
k→0

M(k; x, t) = I .
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Lax Pair and Riemann-Hilbert Problem

Riemann-Hilbert problem: Seek a 2× 2 matrix-valued function M(k; x, t) of k ∈ C
with (x, t) ∈ R2 with the following properties:

Normalization at the Origin: The matrix M(k; x, t) is normalized in the sense that

lim
k→0

M(k; x, t) = I .

From the solution of this problem,

φ(x, t) := lim
k→∞

2k

α

M12(k; x, t)

M22(k; x, t)

solves the Cauchy problem for the MNLS equation.
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Lax Pair and Riemann-Hilbert Problem

This is a Riemann-Hilbert problem with jump discontinuities on both real and imaginary

k-axes.
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Lax Pair and Riemann-Hilbert Problem

This is a Riemann-Hilbert problem with jump discontinuities on both real and imaginary

k-axes.

However, it can be shown (see Kaup & Newell, 1978) that

N(z; x, t) := k
σ3/2M(k; x, t)k

−σ3/2

is a function only of z = −k2. Consequently, (the first row of) N(z; x, t) satisfies a

Riemann-Hilbert problem with a jump discontinuity only on the real z-axis, and with half

the number of poles, arranged in complex-conjugate pairs, with no further symmetry.
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Lax Pair and Riemann-Hilbert Problem

This is a Riemann-Hilbert problem with jump discontinuities on both real and imaginary

k-axes.

However, it can be shown (see Kaup & Newell, 1978) that

N(z; x, t) := k
σ3/2M(k; x, t)k

−σ3/2

is a function only of z = −k2. Consequently, (the first row of) N(z; x, t) satisfies a

Riemann-Hilbert problem with a jump discontinuity only on the real z-axis, and with half

the number of poles, arranged in complex-conjugate pairs, with no further symmetry.

This “de-symmetrized” formulation of the Riemann-Hilbert problem is more like that for

the focusing NLS equation. It is better suited to semiclassical analysis with a

“g-function” because the genus of the microstructure will be correctly predicted.
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Formal Semiclassical Limit

One of the main reasons for our interest in the MNLS problem is summarized by the

following calculation.
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Formal Semiclassical Limit

One of the main reasons for our interest in the MNLS problem is summarized by the

following calculation. Introducing as before the hydrodynamic variables

ρ(x, t) := |φ|2 and u(x, t) := ε=
∂

∂x
log(φ) ,

the initial-value problem for the MNLS equation becomes, exactly,

∂ρ

∂t
+

∂

∂x

»
uρ+

3α

2
ρ

2

–
= 0

∂u

∂t
+

∂

∂x

»
1

2
u

2 − ρ+ αuρ

–
=
ε2

2

∂

∂x

(ρ1/2)xx

ρ1/2
,

with initial data independent of ε: ρ(x, 0) = A(x)2 and u(x, 0) = S′(x).
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Formal Semiclassical Limit: Modulation Equations

Setting ε = 0 yields a Cauchy problem for the quasilinear system of modulation equations

∂

∂t

»
ρ

u

–
+

»
u+ 3αρ ρ

αu− 1 u− αρ

–
∂

∂x

»
ρ

u

–
= 0 .
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Formal Semiclassical Limit: Modulation Equations

Setting ε = 0 yields a Cauchy problem for the quasilinear system of modulation equations

∂

∂t

»
ρ

u

–
+

»
u+ 3αρ ρ

αu− 1 u− αρ

–
∂

∂x

»
ρ

u

–
= 0 .

This system is

• Elliptic if α2ρ+ αu− 1 < 0.
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Formal Semiclassical Limit: Modulation Equations

Setting ε = 0 yields a Cauchy problem for the quasilinear system of modulation equations

∂

∂t

»
ρ

u

–
+

»
u+ 3αρ ρ

αu− 1 u− αρ

–
∂

∂x

»
ρ

u

–
= 0 .

This system is

• Elliptic if α2ρ+ αu− 1 < 0.

• Hyperbolic if α2ρ+ αu− 1 > 0.

Therefore, modulational stability can be recovered with a focusing nonlinearity if α > 0 is

sufficiently large, and if u > 0 in the tails of φ. In particular, since ρ > 0, the condition

u > 1/α is sufficient (but not necessary) for hyperbolicity.
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Formal Semiclassical Limit: Lack of Galilean Invariance

The fact that a sufficiently large velocity u > 1/α makes the modulation equations

hyperbolic might have been expected, because the MNLS equation is not invariant under

the group of Galilean velocity boosts.
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Formal Semiclassical Limit: Lack of Galilean Invariance

The fact that a sufficiently large velocity u > 1/α makes the modulation equations

hyperbolic might have been expected, because the MNLS equation is not invariant under

the group of Galilean velocity boosts.

Set φ(x, t) = ei(cξ+c
2τ)/εψ(ξ, τ) with ξ = x− ct and τ = t. If φ(x, t) satisfies the

MNLS equation, then ψ(ξ, τ) satisfies

iε
∂ψ

∂τ
+
ε2

2

∂2ψ

∂ξ2
+ (1− αc)|ψ|2ψ + iαε

∂

∂ξ
(|ψ|2ψ) = 0 .
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Formal Semiclassical Limit: Lack of Galilean Invariance

The fact that a sufficiently large velocity u > 1/α makes the modulation equations

hyperbolic might have been expected, because the MNLS equation is not invariant under

the group of Galilean velocity boosts.

Set φ(x, t) = ei(cξ+c
2τ)/εψ(ξ, τ) with ξ = x− ct and τ = t. If φ(x, t) satisfies the

MNLS equation, then ψ(ξ, τ) satisfies

iε
∂ψ

∂τ
+
ε2

2

∂2ψ

∂ξ2
+ (1− αc)|ψ|2ψ + iαε

∂

∂ξ
(|ψ|2ψ) = 0 .

If c > 1/α, this equation looks like a perturbation of the modulationally stable

defocusing NLS equation rather than the modulationally unstable focusing NLS equation.
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Formal Semiclassical Limit: Connection with Focusing NLS

Suppose that α2ρ + αu− 1 < 0 (unstable

case) and that ρ > 0, defining an open

domainD−(α) ⊂ R2. Consider the map F−
taking (ρ, u) ∈ D−(α) to (ρ̂, û) ∈ R2:

ρ̂ := −ρ · (α2
ρ+ αu− 1)

û := u+ 2αρ .



The Semiclassical Modified Nonlinear Schrödinger Equation: Facts and Artifacts May 23, 2007

Formal Semiclassical Limit: Connection with Focusing NLS

Suppose that α2ρ + αu− 1 < 0 (unstable

case) and that ρ > 0, defining an open

domainD−(α) ⊂ R2. Consider the map F−
taking (ρ, u) ∈ D−(α) to (ρ̂, û) ∈ R2:

ρ̂ := −ρ · (α2
ρ+ αu− 1)

û := u+ 2αρ .

F− is one-to-one and maps D−(α) onto the

upper half-plane ρ̂ > 0:

ρ

u −

1

α0

u = c

ρ̂

û −

1

α0

ρ̂ = Q(û; c, α)

α

2
ρ
+

α
u
−

1
=

0
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Formal Semiclassical Limit: Connection with Focusing NLS

It is a direct matter to check that if (ρ, u) ∈ D−(α) and satisfy the (elliptic) MNLS

modulation equations, then

∂

∂t

»
ρ̂

û

–
+

»
û ρ̂

−1 û

–
∂

∂x

»
ρ̂

û

–
= 0 .
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Formal Semiclassical Limit: Connection with Focusing NLS

It is a direct matter to check that if (ρ, u) ∈ D−(α) and satisfy the (elliptic) MNLS

modulation equations, then

∂

∂t

»
ρ̂

û

–
+

»
û ρ̂

−1 û

–
∂

∂x

»
ρ̂

û

–
= 0 .

This is exactly the system of modulation equations for the focusing NLS equation. The

semiclassical dynamics of the MNLS equation on the modulationally unstable sector of its

phase space is equivalent to the semiclassical dynamics of the focusing NLS equation.
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Formal Semiclassical Limit: Connection with Defocusing NLS

Suppose instead that α2ρ + αu − 1 > 0

(stable case) and that ρ > 0, defining

an open domain D+(α) ⊂ R2. Consider

the map F+ taking (ρ, u) ∈ D+(α) to

(ρ̂, û) ∈ R2:

ρ̂ := ρ · (α2
ρ+ αu− 1)

û := u+ 2αρ .
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Formal Semiclassical Limit: Connection with Defocusing NLS

Suppose instead that α2ρ + αu − 1 > 0

(stable case) and that ρ > 0, defining

an open domain D+(α) ⊂ R2. Consider

the map F+ taking (ρ, u) ∈ D+(α) to

(ρ̂, û) ∈ R2:

ρ̂ := ρ · (α2
ρ+ αu− 1)

û := u+ 2αρ .

Unlike F−, F+ is generally two-to-one and

has a smaller range:

ρ

u −

1

α

α

2
ρ
+

α
u
−

1
=

0

ρ
=

(
u
−

c
)
2

4
(
α
c
−

1
)

0

0

ρ̂

û −

1

α

ρ̂
=

1

4

�

û
−

1

α

�

2

ρ̂
=

1 4
(û

−

c
)
2

u =
1

α
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Formal Semiclassical Limit: Connection with Defocusing NLS

It is a direct matter to check that if (ρ, u) ∈ D+(α) and satisfy the (hyperbolic) MNLS

modulation equations, then

∂

∂t

»
ρ̂

û

–
+

»
û ρ̂

1 û

–
∂

∂x

»
ρ̂

û

–
= 0 .
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Formal Semiclassical Limit: Connection with Defocusing NLS

It is a direct matter to check that if (ρ, u) ∈ D+(α) and satisfy the (hyperbolic) MNLS

modulation equations, then

∂

∂t

»
ρ̂

û

–
+

»
û ρ̂

1 û

–
∂

∂x

»
ρ̂

û

–
= 0 .

This is exactly the system of modulation equations for the defocusing NLS equation. The

semiclassical dynamics of the MNLS equation on the modulationally stable sector of its

phase space is equivalent (modulo issues related to the noninvertibility of the map F+) to

the semiclassical dynamics of the defocusing NLS equation.
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Bounds on the Discrete Spectrum

The first step in a rigorous semiclassical analysis of the MNLS equation via

inverse-scattering techniques is to study the spectral problem

ε
dv
dx

= Lv , L :=

»
Λ 2ikφ

2ikφ∗ −Λ

–
, Λ := −

2i

α

„
k

2 −
1

4

«
,

where φ = A(x)eiS(x)/ε is the initial data for the Cauchy problem.
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Bounds on the Discrete Spectrum

The first step in a rigorous semiclassical analysis of the MNLS equation via

inverse-scattering techniques is to study the spectral problem

ε
dv
dx

= Lv , L :=

»
Λ 2ikφ

2ikφ∗ −Λ

–
, Λ := −

2i

α

„
k

2 −
1

4

«
,

where φ = A(x)eiS(x)/ε is the initial data for the Cauchy problem. Some comments:

• This is not a proper eigenvalue problem (k enters nonlinearly) much less a selfadjoint

one.
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Bounds on the Discrete Spectrum

The first step in a rigorous semiclassical analysis of the MNLS equation via

inverse-scattering techniques is to study the spectral problem

ε
dv
dx

= Lv , L :=

»
Λ 2ikφ

2ikφ∗ −Λ

–
, Λ := −

2i

α

„
k

2 −
1
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«
,

where φ = A(x)eiS(x)/ε is the initial data for the Cauchy problem. Some comments:

• This is not a proper eigenvalue problem (k enters nonlinearly) much less a selfadjoint

one.

• The only elementary symmetry is that the discrete spectrum is invariant under k ↔ −k
and k ↔ k∗.
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Bounds on the Discrete Spectrum

The first step in a rigorous semiclassical analysis of the MNLS equation via

inverse-scattering techniques is to study the spectral problem

ε
dv
dx

= Lv , L :=

»
Λ 2ikφ

2ikφ∗ −Λ

–
, Λ := −

2i

α

„
k

2 −
1

4

«
,

where φ = A(x)eiS(x)/ε is the initial data for the Cauchy problem. Some comments:

• This is not a proper eigenvalue problem (k enters nonlinearly) much less a selfadjoint

one.

• The only elementary symmetry is that the discrete spectrum is invariant under k ↔ −k
and k ↔ k∗.

• Any information that further confines the discrete spectrum, especially in the limit

ε ↓ 0, is essential for semiclassical analysis.
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Bounds on the Discrete Spectrum

The first step in a rigorous semiclassical analysis of the MNLS equation via

inverse-scattering techniques is to study the spectral problem

ε
dv
dx

= Lv , L :=

»
Λ 2ikφ

2ikφ∗ −Λ

–
, Λ := −

2i

α

„
k

2 −
1

4

«
,

where φ = A(x)eiS(x)/ε is the initial data for the Cauchy problem. Some comments:

• This is not a proper eigenvalue problem (k enters nonlinearly) much less a selfadjoint

one.

• The only elementary symmetry is that the discrete spectrum is invariant under k ↔ −k
and k ↔ k∗.

• Any information that further confines the discrete spectrum, especially in the limit

ε ↓ 0, is essential for semiclassical analysis.

• We generalize an argument of Deift, Venakides, and Zhou for the Zakharov-Shabat

eigenvalue problem to the present context.
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Bounds on the Discrete Spectrum

A WKB approach for small ε: set w := e−(iS(x)/(2ε))σ3v to remove oscillations from the

coefficients:

2αε
dw
dx

= iMw , M :=

»
−4k2 + 1− αS′(x) 4αkA(x)

4αkA(x) 4k2 − 1 + αS′(x)

–
.
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Bounds on the Discrete Spectrum

A WKB approach for small ε: set w := e−(iS(x)/(2ε))σ3v to remove oscillations from the

coefficients:

2αε
dw
dx

= iMw , M :=

»
−4k2 + 1− αS′(x) 4αkA(x)

4αkA(x) 4k2 − 1 + αS′(x)

–
.

Then expand (formally) w = eiσ/(2αε)(wo + εw1 + · · · ). At leading order,

Mwo =
dσ

dx
wo .
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Bounds on the Discrete Spectrum

A WKB approach for small ε: set w := e−(iS(x)/(2ε))σ3v to remove oscillations from the

coefficients:

2αε
dw
dx

= iMw , M :=

»
−4k2 + 1− αS′(x) 4αkA(x)

4αkA(x) 4k2 − 1 + αS′(x)

–
.

Then expand (formally) w = eiσ/(2αε)(wo + εw1 + · · · ). At leading order,

Mwo =
dσ

dx
wo .

Eigenvalues of M are ±ω where

ω(x; k) :=
h
16α

2
k

2
A(x)

2
+ (4k

2 − 1 + αS
′
(x))

2
i1/2

.
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Bounds on the Discrete Spectrum

Turning points in WKB are values of x ∈ R for which the eigenvalues of M degenerate.

For most k ∈ C there are no turning points at all. In this case, ω(x; k) is well-defined

for x ∈ R by continuity and a choice of branch. The exceptional values of k ∈ C with

={k2} 6= 0 lie on the turning point curve T defined parametrically by

={k} = s1

α

2
A(x) , <{k} = s2

1

2

q
1− αS′(x)− α2A(x)2 ,

for modulationally unstable x ∈ R, where sj are independent signs.
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Bounds on the Discrete Spectrum

Turning points in WKB are values of x ∈ R for which the eigenvalues of M degenerate.

For most k ∈ C there are no turning points at all. In this case, ω(x; k) is well-defined

for x ∈ R by continuity and a choice of branch. The exceptional values of k ∈ C with

={k2} 6= 0 lie on the turning point curve T defined parametrically by

={k} = s1

α

2
A(x) , <{k} = s2

1

2

q
1− αS′(x)− α2A(x)2 ,

for modulationally unstable x ∈ R, where sj are independent signs. Define also

q(x; k) :=
2αkA(x)

ω(x; k)
·
d

dx
log

„
A(x)

ω(x; k) + 4k2 − 1 + αS′(x)

«
,

and set

Lk := sup
x∈R

˛̨̨̨
d

dx

„
1

={ω(x; k)}

«˛̨̨̨
+ 2 sup

x∈R

˛̨̨̨
<{q(x; k)}
={ω(x; k)}

˛̨̨̨
.
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Bounds on the Discrete Spectrum

Theorem 1. Let A : R → R+ be a uniformly Lipschitz function of class L1(R) and let

S′ : R → R be uniformly Lipschitz with S′′(·) of class L1(R). Let k be a fixed complex

number with ={k2} 6= 0 and k 6∈ T . The following statements hold:

(a) If k is an eigenvalue, then |={k}| ≤
α

2
sup
x∈R

A(x).

(b) If αεLk < 1 then k is not an eigenvalue.
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Bounds on the Discrete Spectrum

Theorem 1. Let A : R → R+ be a uniformly Lipschitz function of class L1(R) and let

S′ : R → R be uniformly Lipschitz with S′′(·) of class L1(R). Let k be a fixed complex

number with ={k2} 6= 0 and k 6∈ T . The following statements hold:

(a) If k is an eigenvalue, then |={k}| ≤
α

2
sup
x∈R

A(x).

(b) If αεLk < 1 then k is not an eigenvalue.

We use part (b) in the following way: we seek conditions on k ∈ C for which we can prove

that Lk < +∞. Such k cannot be eigenvalues for any values of ε sufficiently small.
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Bounds on the Discrete Spectrum

Theorem 1. Let A : R → R+ be a uniformly Lipschitz function of class L1(R) and let

S′ : R → R be uniformly Lipschitz with S′′(·) of class L1(R). Let k be a fixed complex

number with ={k2} 6= 0 and k 6∈ T . The following statements hold:

(a) If k is an eigenvalue, then |={k}| ≤
α

2
sup
x∈R

A(x).

(b) If αεLk < 1 then k is not an eigenvalue.

We use part (b) in the following way: we seek conditions on k ∈ C for which we can prove

that Lk < +∞. Such k cannot be eigenvalues for any values of ε sufficiently small.

Note that for the class of potentials under consideration, Lk < +∞ if ={ω(x; k)} does

not vanish for any x ∈ R.
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Bounds on the Discrete Spectrum

The condition ={ω(x; k)} 6= 0 for all x ∈ R has a simple geometrical interpretation: as

ε ↓ 0 all eigenvalues lie in the “hyperbolic shadow” of the turning point curve T :

Re{k}

Im
{k
}

Im
{k
}

Re{k}
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Bounds on the Discrete Spectrum

Example: A(x) = sech(x) and S′(x) = sech(x) tanh(x), α = 0.894.
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Bounds on the Discrete Spectrum

Example: A(x) = sech(x) and S′(x) = sech(x) tanh(x), α = 0.805.
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Bounds on the Discrete Spectrum

Example: A(x) = sech(x) and S′(x) = sech(x) tanh(x), α = 0.716.
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Bounds on the Discrete Spectrum

Example: A(x) = sech(x) and S′(x) = sech(x) tanh(x), α = 0.626.
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Bounds on the Discrete Spectrum

Example: A(x) = sech(x) and S′(x) = sech(x) tanh(x), α = 0.537.
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Bounds on the Discrete Spectrum

Example: A(x) = sech(x) and S′(x) = sech(x) tanh(x), α = 0.447.

Note: λ = (2k − 1)/α is the spectral parameter for focusing NLS (α = 0).
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Bounds on the Discrete Spectrum

Example: A(x) = sech(x) and S′(x) = sech(x) tanh(x), α = 0.358.

Note: λ = (2k − 1)/α is the spectral parameter for focusing NLS (α = 0).
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Bounds on the Discrete Spectrum

Example: A(x) = sech(x) and S′(x) = sech(x) tanh(x), α = 0.268.

Note: λ = (2k − 1)/α is the spectral parameter for focusing NLS (α = 0).
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Bounds on the Discrete Spectrum

Example: A(x) = sech(x) and S′(x) = sech(x) tanh(x), α = 0.179.

Note: λ = (2k − 1)/α is the spectral parameter for focusing NLS (α = 0).
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Bounds on the Discrete Spectrum

Example: A(x) = sech(x) and S′(x) = sech(x) tanh(x), α = 0.089.

Note: λ = (2k − 1)/α is the spectral parameter for focusing NLS (α = 0).
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Hypergeometric Potentials
Some history:

• In 1973, Satsuma and Yajima showed that for potentials of the form φ(x) = ν sech(x)

in the nonselfadjoint Zakharov-Shabat spectral problem (appropriate for focusing NLS):

ε
dv
dx

=

»
−iλ φ

−φ∗ iλ

–
v

all scattering data could be computed explicitly for all ε by converting the eigenvalue

problem into a hypergeometric equation.
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Hypergeometric Potentials
Some history:

• In 1973, Satsuma and Yajima showed that for potentials of the form φ(x) = ν sech(x)

in the nonselfadjoint Zakharov-Shabat spectral problem (appropriate for focusing NLS):

ε
dv
dx

=

»
−iλ φ

−φ∗ iλ

–
v

all scattering data could be computed explicitly for all ε by converting the eigenvalue

problem into a hypergeometric equation.

• In 2000, Tovbis and Venakides generalized this result to potentials of the form

φ(x) = ν sech(x)eiS(x)/ε where S′(x) = µ tanh(x) and ν and µ are independent

real parameters.
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Hypergeometric Potentials
Some history:

• In 1973, Satsuma and Yajima showed that for potentials of the form φ(x) = ν sech(x)

in the nonselfadjoint Zakharov-Shabat spectral problem (appropriate for focusing NLS):

ε
dv
dx

=

»
−iλ φ

−φ∗ iλ

–
v

all scattering data could be computed explicitly for all ε by converting the eigenvalue

problem into a hypergeometric equation.

• In 2000, Tovbis and Venakides generalized this result to potentials of the form

φ(x) = ν sech(x)eiS(x)/ε where S′(x) = µ tanh(x) and ν and µ are independent

real parameters.

It is easy to see that the Tovbis-Venakides analysis also goes through virtually unchanged

if S′(x) = µ tanh(x) + δ for any δ ∈ R.
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Hypergeometric Potentials

We have found that potentials of the Tovbis-Venakides class are hypergeometric also for

the MNLS spectral problem, for arbitrary ε > 0 and α > 0.
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Hypergeometric Potentials

We have found that potentials of the Tovbis-Venakides class are hypergeometric also for

the MNLS spectral problem, for arbitrary ε > 0 and α > 0. This is a rich enough family

to afford several interesting possiblilities:

• If αδ > 1, then there are no discrete eigenvalues. In this case,

? if |µ| < (αδ − 1)/α, then the modulation equations are hyperbolic for all x at

t = 0, while

? if |µ| > (αδ − 1)/α, then there exist x ∈ R for which the modulation equations

are elliptic at t = 0.
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Hypergeometric Potentials

We have found that potentials of the Tovbis-Venakides class are hypergeometric also for

the MNLS spectral problem, for arbitrary ε > 0 and α > 0. This is a rich enough family

to afford several interesting possiblilities:

• If αδ > 1, then there are no discrete eigenvalues. In this case,

? if |µ| < (αδ − 1)/α, then the modulation equations are hyperbolic for all x at

t = 0, while

? if |µ| > (αδ − 1)/α, then there exist x ∈ R for which the modulation equations

are elliptic at t = 0.

• If αδ < 1, then regardless of the value of µ ∈ R there exist x ∈ R for which the

modulation equations are elliptic at t = 0. In this case,

? if |µ| < 2ν
√

1− αδ then there are ∼ ε−1 discrete eigenvalues, while

? if |µ| > 2ν
√

1− αδ then there are no discrete eigenvalues.
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Hypergeometric Potentials

The reflection coefficient r(k) for this problem is meromorphic with poles of two types:
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Hypergeometric Potentials

The reflection coefficient r(k) for this problem is meromorphic with poles of two types:

• “Eigenvalue poles”: these are simple poles at the eigenvalues kn whose representatives

in the second quadrant satisfy

Ω(kn) +
1

2
R(kn) =

„
n+

1

2

«
ε , with

8<:Ω(k) :=
1

2iα
(4k

2
+ αδ − 1)

R(k) := (16k2ν2 − µ2)1/2 ,

for n = 0, 1, 2, . . . .
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Hypergeometric Potentials

The reflection coefficient r(k) for this problem is meromorphic with poles of two types:

• “Eigenvalue poles”: these are simple poles at the eigenvalues kn whose representatives

in the second quadrant satisfy

Ω(kn) +
1

2
R(kn) =

„
n+

1

2

«
ε , with

8<:Ω(k) :=
1

2iα
(4k

2
+ αδ − 1)

R(k) := (16k2ν2 − µ2)1/2 ,

for n = 0, 1, 2, . . . .

• “Phantom poles”: these are simple poles k = km that have nothing to do with

eigenvalues. Their representatives in the second quadrant are given by

iµ

2
+ Ω(km) = −

„
m+

1

2

«
ε ,

for m = 0, 1, 2, . . . .
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Hypergeometric Potentials

Eigenvalue poles and phantom poles may only interact if −α2ν2/2 ≤ µ ≤ 0.

Interaction of eigenvalue poles and phantom poles for ε = 0.075, ν = 0.6846, δ = 0.5

and µ = −0.5:

α = 1.5 α = 1.3 α = 1.1
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Hypergeometric Potentials

Eigenvalue poles and phantom poles may only interact if −α2ν2/2 ≤ µ ≤ 0.

Interaction of eigenvalue poles and phantom poles for ε = 0.075, ν = 0.6846, δ = 0.5

and µ = −0.5:

α = 1.004 α = 1 α = 0.996
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Hypergeometric Potentials

Eigenvalue poles and phantom poles may only interact if −α2ν2/2 ≤ µ ≤ 0.

Interaction of eigenvalue poles and phantom poles for ε = 0.075, ν = 0.6846, δ = 0.5

and µ = −0.5:

α = 0.930 α = 0.924
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Hypergeometric Potentials

Eigenvalue poles and phantom poles may only interact if −α2ν2/2 ≤ µ ≤ 0.

Interaction of eigenvalue poles and phantom poles for ε = 0.075, ν = 0.6846, δ = 0.5

and µ = −0.5:

α = 0.801 α = 0.798
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Hypergeometric Potentials

Eigenvalue poles and phantom poles may only interact if −α2ν2/2 ≤ µ ≤ 0.

Interaction of eigenvalue poles and phantom poles for ε = 0.075, ν = 0.6846, δ = 0.5

and µ = −0.5:

α = 0.7 α = 0.5 α = 0.3
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Hypergeometric Potentials

The limiting behavior as α→ 0 corresponds to the predictions of Tovbis and Venakides

for the Zakharov-Shabat problem:

α = 0.3 α = 0.03 α = 0.003

Return to outline.
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Ongoing Work and Conclusions

The next phase of the project includes the following subprojects:

• The investigation of a Klaus-Shaw type exact eigenvalue confinement condition.

Hypothesis: if A(x) > 0 has a single local maximum and if 4αA(x)A′(X) +

S′′(x) ≡ 0 (this puts the T on a single hyperbola), then the eigenvalues are exactly

confined to this hyperbola for all ε > 0.
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Ongoing Work and Conclusions

The next phase of the project includes the following subprojects:

• The investigation of a Klaus-Shaw type exact eigenvalue confinement condition.

Hypothesis: if A(x) > 0 has a single local maximum and if 4αA(x)A′(X) +

S′′(x) ≡ 0 (this puts the T on a single hyperbola), then the eigenvalues are exactly

confined to this hyperbola for all ε > 0.

• The rigorous semiclassical asymptotic analysis of the Riemann-Hilbert problem of inverse

scattering for the hypergeometric cases, using the nonclassical steepest descent method

of Deift and Zhou. Special attention paid to

? implications of interactions of the phantom poles with eigenvalues,

? implications of crossing the modulational stability threshold.
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Ongoing Work and Conclusions

• Understand the effect of spectral singularities on the global well-posedness of the

Cauchy problem for the MNLS equation.
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Ongoing Work and Conclusions

• Understand the effect of spectral singularities on the global well-posedness of the

Cauchy problem for the MNLS equation.

• Understand better the presence of both the focusing and defocusing NLS dynamics

within the MNLS problem. Does this take place for the Whitham equations of genera

greater than 1 (genus 1 studied by Kuvshinov and Lakhin)? Does the semiclassical

embedding of focusing/defocusing NLS within MNLS have a prolongation to nonzero

ε?
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Ongoing Work and Conclusions

• Understand the effect of spectral singularities on the global well-posedness of the

Cauchy problem for the MNLS equation.

• Understand better the presence of both the focusing and defocusing NLS dynamics

within the MNLS problem. Does this take place for the Whitham equations of genera

greater than 1 (genus 1 studied by Kuvshinov and Lakhin)? Does the semiclassical

embedding of focusing/defocusing NLS within MNLS have a prolongation to nonzero

ε?

Thank You!
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