May 26, 2007

Abstract
We will discuss some generalized eigenvalue problems (in which the eigenvalue does not
necessarily enter linearly) in a semiclassical scaling (where derivatives are multiplied by small
coefficients). Such problems arise frequently in the asymptotic analysis of nonlinear problems
solvable by an inverse-scattering transform. We will show how the asymptotics of the discrete
spectrum leads to the idea of universality classes of potentials and describe how this idea can be

used to approximate the discrete spectrum with quantitiative error estimates.
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Here is another Cauchy problem (SG):

2

Upr — 2fqu—l—sin(’uJ)=O, xreR, t>0,

’LL(:U,O) — f(iU), ut(a;,O) :g(w)
We suppose that f(-) € R, g(+) € R, f(£oo) = 2w N4, and g(+o0) = 0.
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or sma we may Settie Tor approxXimations thereor, wi error estimates attached.

2. The spectral data, along with parameters x and t, become input data for an -dependent
matrix-valued Riemann-Hilbert problem of complex analysis.
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Motivation: Semiclassical Limits for Integrable PDE

For small we may settle for approximations thereof, with error estimates attached.

2. The spectral data, along with parameters x and t, become input data for an -dependent
matrix-valued Riemann-Hilbert problem of complex analysis.

The subject of this talk is step 1. What can we say about the spectral data for general
initial conditions? What can be made quantitatively accurate for small ? How accurate?
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(z — 2 Y cos(bf(x))a — (= + = ") sin(Lf (2))b — ig()b

—(z4+27 sin(3f(z))a + ig(z)a — (z — z ) cos(5f(z))b.

Here z € C is the eigenvalue parameter.
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Generalized Eigenvalue Problems

spectrum lies on the imaginary axis of the A-plane, and
the integer part of a specific multiple of ||Al|1/ .

DEr OT €igenvalues IS
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Generalized Eigenvalue Problems

spectrum lies on the imaginary axis of the A-plane, and the number of eigenvalues is
the integer part of a specific multiple of ||Al|1/ .

e (J. Bronski and M. Johnson, 2007) Consider the (SG) generalized eigenvalue problem.
If g(-) = 0 and sin(3f) € L'(R) is a function with a single critical point (a local
max) then the discrete spectrum lies on the unit circle of the z-plane, and the number
of eigenvalues is the integer part of a specific multiple of || sin(3 f) |1/ -

Depantonct of

MATHEMATICS

University of Michigan




Universality Classes for Semiclassical Eigenvalue Problems May 26, 2007

Generalized Eigenvalue Problems

and A € L (R) is a function with a single critical point (a local max) then the discrete
spectrum lies on the imaginary axis of the A-plane, and the number of eigenvalues is
the integer part of a specific multiple of ||Al|1/ .

e (J. Bronski and M. Johnson, 2007) Consider the (SG) generalized eigenvalue problem.
If g(-) = 0 and sin(3f) € L'(R) is a function with a single critical point (a local
max) then the discrete spectrum lies on the unit circle of the z-plane, and the number
of eigenvalues is the integer part of a specific multiple of || sin(3 f)||1/ . Note: this is

the same as saying that the topological charge N := N, — N_ = +1 and that f(-)
is monotone while g(-) = 0.
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Exactly Solvable Spectral Problems

g(-) = 0 and sin(5f(x)) = sech(x), cos

in the upper half-plane are of the form z
sin@0)=1— ,1—-2,1—-3,....

2
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Exactly Solvable Spectral Problems

g(-) =0 and sin(5f(z)) = sech(z), cos(5f(z)) = tanh(z). The eigenvalues

in the upper half-plane are of the form 2z = 4, 2 = € and z = 9 for

sin@)=1— ,1—-2,1-—3,

In both cases, the analysis is carried out by rewriting the eigenvalue problem as a
hypergeometric equation, and using Euler integral representations of solutions to
construct the spectral data (including eigenvalues, proportionality constants, and
reflection coefficients) in terms of gamma functions.
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Universality Classes

corresponding equal spacings of the exactly solvable model. In the semiclassical limit
1 0, the discrete spectrum of all Klaus-Shaw potentials looks (locally) the same, and
that of all Bronski-Johnson potentials looks (locally) the same.
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Analysis of the Eigenvalue Problem: Langer Transformation

change of independent variable by

s=a), 3] =M [5]

for some invertible matrix M(y, s), we obtain
d [a d dM !
i o] =™ [ M G
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Analysis of the Eigenvalue Problem: Langer Transformation

that for the Satsuma-Yajima potential, with some other eigenvalue parameter 7r:

2 a0 L <2
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Analysis of the Eigenvalue Problem: Langer Transformation

rategy: try to choose x(y) anc e coefficient matrix an -perturbation o
that for the Satsuma-Yajima potential, with some other eigenvalue parameter 7r:
d_acM_l S A(x) M — | All1 r sech(y)
dy —A(x) —s w | —sech(y) —r

For this equation to hold, the determinants must be equal:

(dw>2 (Ae) — 5?) — (”1”1)2 (sech®(y) — r2) .

dy
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Analysis of the Eigenvalue Problem: Langer Transformation

is a Klaus-Shaw potential, there are in each case exactly two turning points whenever
O<s<maxAand 0 <r < 1.
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Analysis of the Eigenvalue Problem: Langer Transformation

a relation between r and s.
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Analysis of the Eigenvalue Problem: Langer Transformation

sech’(y) — r2dy = [|All,(1 —r).

a relation between r and s.

Note: if we neglect the correction term in the Langer-transformed spectral problem, then
we know the eigenvalues exactly (Satsuma-Yajima):

r=1—p/2,1—3u/2,1 —5u/2,..., where u = /||A||1. Plugging these
approximate values into the above relation yields the Bohr-Sommerfeld formula of WKB
theory: it ought to give approximations of some kind or other to the true eigenvalues s.
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1 I |

where g is a function built from the Langer transformation x = xz(y) and R is a
constant rank one matrix.
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Ingredients in Rigorous Analysis

1 I |

where g is a function built from the Langer transformation © = x(y) and R is a
constant rank one matrix.

3. “Solve” for a’ and b’ by inverting the Satsuma-Yajima operator on the left-hand side
by means of “variation of parameters”. This requires a basis of solutions of the

unperturbed problem, which are hypergeometric functions. This yields an integral
equation for a’ and b'.
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Ingredients in Rigorous Analysis

If this procedure is successful, then the Bohr-Sommerfeld formula will be accurate to
order O( ?), uniformly throughout the spectrum, and universality is established.
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Ingredients in Rigorous Analysis

Construct and examine the roots of an appropriate Wronskian.

If this procedure is successful, then the Bohr-Sommerfeld formula will be accurate to
order O( 2), uniformly throughout the spectrum, and universality is established.

A wrinkle: the estimates we know how to obtain in step 4 are not sufficiently refined to
allow control of the integral equations for large y. Instead, for y < —1 (say) we
construct a different Langer transformation to the potential e” instead of sech(y). The
exponential potential problem can also be solved exactly, in terms of Bessel functions.

These integrals can be controlled for large y.
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Langer Transformations for Nonsemiclassical Problems: Homotopy
Method
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Langer Transformations for Nonsemiclassical Problems: Homotopy
Method

i 1]~ [seiny ) [o] = otwrom 5]

We can only write the spectral problem in this form if the original A(-) was a Klaus-Shaw
potential. Introduce an artifical homotopy parameter h € [0, 1] multiplying g.
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Langer Transformations for Nonsemiclassical Problems: Homotopy

Method

Here is the Langer-transformed spectral problem for (FNLS) with = 1:

d [a r sech(y)| [a'] _ a’

o ey @] (5] = swormr []
We can only write the spectral problem in this form if the original A(-) was a Klaus-Shaw
potential. Introduce an artifical homotopy parameter h € [0, 1] multiplying g.
When h = 0O the spectrum is known exactly, and is confined to the imaginary axis by
exact calculation. One could deduce the Klaus-Shaw theorem if one could show that as A
Is increased to h = 1, the eigenvalues do not collide.
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linear gauge transformation with a nonlinear change of independent variable.
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Conclusions

linear gauge transformation with a nonlinear change of independent variable.

e Langer transformed spectral problems may also present an avenue to proving exact
spectral confinement theorems.
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