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Abstract
We will discuss some generalized eigenvalue problems (in which the eigenvalue does not

necessarily enter linearly) in a semiclassical scaling (where derivatives are multiplied by small

coefficients). Such problems arise frequently in the asymptotic analysis of nonlinear problems

solvable by an inverse-scattering transform. We will show how the asymptotics of the discrete

spectrum leads to the idea of universality classes of potentials and describe how this idea can be

used to approximate the discrete spectrum with quantitiative error estimates.
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Motivation: Semiclassical Limits for Integrable PDE

Consider, for ε positive, the following Cauchy problem (FNLS):

iεψt +
ε2

2
ψxx + |ψ|2ψ = 0 , x ∈ R , t > 0 ,

ψ(x, 0) = A(x)e
iS(x)/ε

.

We suppose that A(·) > 0, A(±∞) = 0, S(·) ∈ R, and S′(±∞) = u±.
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Consider, for ε positive, the following Cauchy problem (FNLS):

iεψt +
ε2

2
ψxx + |ψ|2ψ = 0 , x ∈ R , t > 0 ,

ψ(x, 0) = A(x)e
iS(x)/ε

.

We suppose that A(·) > 0, A(±∞) = 0, S(·) ∈ R, and S′(±∞) = u±.

Here is another Cauchy problem (SG):

ε
2
utt − ε

2
uxx + sin(u) = 0 , x ∈ R , t > 0 ,

u(x, 0) = f(x) , εut(x, 0) = g(x) .

We suppose that f(·) ∈ R, g(·) ∈ R, f(±∞) = 2πN±, and g(±∞) = 0.
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Motivation: Semiclassical Limits for Integrable PDE

Both (FNLS) and (SG) may be analyzed for small ε because their (unique) solutions may

be expressed for all ε via an inverse-scattering transform. There are two key steps in such

a solution procedure:
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For small ε we may settle for approximations thereof, with error estimates attached.
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Motivation: Semiclassical Limits for Integrable PDE

Both (FNLS) and (SG) may be analyzed for small ε because their (unique) solutions may

be expressed for all ε via an inverse-scattering transform. There are two key steps in such

a solution procedure:

1. Associating the initial data with an ε-dependent generalized eigenvalue problem,

calculate spectral data: eigenvalues, proportionality constants, reflection coefficient.

For small ε we may settle for approximations thereof, with error estimates attached.

2. The spectral data, along with parameters x and t, become input data for an ε-dependent

matrix-valued Riemann-Hilbert problem of complex analysis.

The subject of this talk is step 1. What can we say about the spectral data for general

initial conditions? What can be made quantitatively accurate for small ε? How accurate?
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Generalized Eigenvalue Problems

The eigenvalue problem for (FNLS) is

ε
da

dx
= −iλa+ A(x)e

iS(x)/ε
b

ε
db

dx
= −A(x)e

−iS(x)/ε
a+ iλb .

Here λ ∈ C is the eigenvalue parameter.
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Generalized Eigenvalue Problems

The eigenvalue problem for (FNLS) is

ε
da

dx
= −iλa+ A(x)e

iS(x)/ε
b

ε
db

dx
= −A(x)e

−iS(x)/ε
a+ iλb .

Here λ ∈ C is the eigenvalue parameter. The generalized eigenvalue problem for (SG) is

4iε
da

dx
= (z − z

−1
) cos(1

2f(x))a− (z + z
−1

) sin(1
2f(x))b− ig(x)b

4iε
db

dx
= −(z + z

−1
) sin(1

2f(x))a+ ig(x)a− (z − z
−1

) cos(1
2f(x))b .

Here z ∈ C is the eigenvalue parameter.
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Generalized Eigenvalue Problems

Neither of these problems is of the form Lu = λu for a selfadjoint operator L. While

the continuous spectrum is the real line in both cases, the discrete spectrum can be

anywhere.



Universality Classes for Semiclassical Eigenvalue Problems May 26, 2007

Generalized Eigenvalue Problems

Neither of these problems is of the form Lu = λu for a selfadjoint operator L. While

the continuous spectrum is the real line in both cases, the discrete spectrum can be
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• (M. Klaus and J. K. Shaw, 2000) Consider the (FNLS) eigenvalue problem. If S(·) ≡ 0

and A ∈ L1(R) is a function with a single critical point (a local max) then the discrete

spectrum lies on the imaginary axis of the λ-plane, and the number of eigenvalues is

the integer part of a specific multiple of ‖A‖1/ε.
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anywhere. Some remarkable facts:

• (M. Klaus and J. K. Shaw, 2000) Consider the (FNLS) eigenvalue problem. If S(·) ≡ 0

and A ∈ L1(R) is a function with a single critical point (a local max) then the discrete

spectrum lies on the imaginary axis of the λ-plane, and the number of eigenvalues is

the integer part of a specific multiple of ‖A‖1/ε.

• (J. Bronski and M. Johnson, 2007) Consider the (SG) generalized eigenvalue problem.

If g(·) ≡ 0 and sin(1
2f) ∈ L1(R) is a function with a single critical point (a local

max) then the discrete spectrum lies on the unit circle of the z-plane, and the number

of eigenvalues is the integer part of a specific multiple of ‖ sin(1
2f)‖1/ε.



Universality Classes for Semiclassical Eigenvalue Problems May 26, 2007

Generalized Eigenvalue Problems

Neither of these problems is of the form Lu = λu for a selfadjoint operator L. While

the continuous spectrum is the real line in both cases, the discrete spectrum can be

anywhere. Some remarkable facts:

• (M. Klaus and J. K. Shaw, 2000) Consider the (FNLS) eigenvalue problem. If S(·) ≡ 0

and A ∈ L1(R) is a function with a single critical point (a local max) then the discrete

spectrum lies on the imaginary axis of the λ-plane, and the number of eigenvalues is

the integer part of a specific multiple of ‖A‖1/ε.

• (J. Bronski and M. Johnson, 2007) Consider the (SG) generalized eigenvalue problem.

If g(·) ≡ 0 and sin(1
2f) ∈ L1(R) is a function with a single critical point (a local

max) then the discrete spectrum lies on the unit circle of the z-plane, and the number

of eigenvalues is the integer part of a specific multiple of ‖ sin(1
2f)‖1/ε. Note: this is

the same as saying that the topological charge N := N+ −N− = ±1 and that f(·)
is monotone while g(·) ≡ 0.
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data S(·) ≡ 0 and A(x) := sech(x). The eigenvalues in the upper half-plane are of

the form λ = i(1− ε/2), i(1− 3ε/2), i(1− 5ε/2), . . . .

• (R. Buckingham and P. M., 2007) Consider the (SG) spectral problem with initial data

g(·) ≡ 0 and sin(1
2f(x)) = sech(x), cos(1

2f(x)) = tanh(x). The eigenvalues

in the upper half-plane are of the form z = i, z = eiθ and z = ei(π−θ) for

sin(θ) = 1− ε, 1− 2ε, 1− 3ε, . . . .
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Exactly Solvable Spectral Problems

These abstract results can be verified explicitly in certain special cases.

• (J. Satsuma and N. Yajima, 1974) Consider the (FNLS) spectral problem with initial

data S(·) ≡ 0 and A(x) := sech(x). The eigenvalues in the upper half-plane are of

the form λ = i(1− ε/2), i(1− 3ε/2), i(1− 5ε/2), . . . .

• (R. Buckingham and P. M., 2007) Consider the (SG) spectral problem with initial data

g(·) ≡ 0 and sin(1
2f(x)) = sech(x), cos(1

2f(x)) = tanh(x). The eigenvalues

in the upper half-plane are of the form z = i, z = eiθ and z = ei(π−θ) for

sin(θ) = 1− ε, 1− 2ε, 1− 3ε, . . . .

In both cases, the analysis is carried out by rewriting the eigenvalue problem as a

hypergeometric equation, and using Euler integral representations of solutions to

construct the spectral data (including eigenvalues, proportionality constants, and

reflection coefficients) in terms of gamma functions.
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Universality Classes
The key idea of this talk is that the family of Klaus-Shaw potentials for the (FNLS)

spectral problem and the family of Bronski-Johnson potentials for the (SG) spectral

problem could be viewed as universality classes of which the Satsuma-Yajima potential and

the Buckingham-M. potential are, respectively, completely understood representatives.
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Universality Classes
The key idea of this talk is that the family of Klaus-Shaw potentials for the (FNLS)

spectral problem and the family of Bronski-Johnson potentials for the (SG) spectral

problem could be viewed as universality classes of which the Satsuma-Yajima potential and

the Buckingham-M. potential are, respectively, completely understood representatives.

Here by universality we mean: upon appropriate rescaling of the spectrum near any point,

the local spacings of eigenvalues converge with great precision as ε ↓ 0 to the

corresponding equal spacings of the exactly solvable model. In the semiclassical limit

ε ↓ 0, the discrete spectrum of all Klaus-Shaw potentials looks (locally) the same, and

that of all Bronski-Johnson potentials looks (locally) the same.

stretch by ρ(x)ǫ−1

x

ǫ
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Analysis of the Eigenvalue Problem: Langer Transformation

A way to approach proving universality is to introduce a gauge transformation to try to

convert the spectral problem into a perturbation of that corresponding to the exactly

solvable potential. Consider, for example, the (FNLS) spectral problem with a Klaus-Shaw

potential:

ε
d

dx

»
a

b

–
=

»
s A(x)

−A(x) −s

– »
a

b

–
.

Here s = −iλ ∈ R+ for all eigenvalues. Introducing a gauge transformation and a

change of independent variable by

x = x(y) ,

»
a

b

–
= M(y, s)

»
a′

b′

–
for some invertible matrix M(y, s), we obtain

ε
d

dy

»
a′

b′

–
=


dx

dy
M−1

»
s A(x)

−A(x) −s

–
M− εM−1dM

dy

ff »
a′

b′

–
.
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Analysis of the Eigenvalue Problem: Langer Transformation

We may in fact write the spectral problem for (FNLS) in the form

ε
d

dy

»
a′

b′

–
=


dx

dy
M−1

»
s A(x)

−A(x) −s

–
M− εM−1dM

dy

ff »
a′

b′

–
for any potential A (not necessarily Klaus-Shaw) and we may choose any reasonable

dependent variable map x = x(y) and any invertible gauge matrix M.
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We may in fact write the spectral problem for (FNLS) in the form

ε
d

dy

»
a′

b′

–
=


dx

dy
M−1

»
s A(x)

−A(x) −s

–
M− εM−1dM

dy

ff »
a′

b′

–
for any potential A (not necessarily Klaus-Shaw) and we may choose any reasonable

dependent variable map x = x(y) and any invertible gauge matrix M.

Strategy: try to choose x(y) and M to make the coefficient matrix an ε-perturbation of

that for the Satsuma-Yajima potential, with some other eigenvalue parameter r:

dx

dy
M−1

»
s A(x)

−A(x) −s

–
M =

‖A‖1

π

»
r sech(y)

−sech(y) −r

–
.



Universality Classes for Semiclassical Eigenvalue Problems May 26, 2007
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We may in fact write the spectral problem for (FNLS) in the form

ε
d

dy

»
a′

b′

–
=


dx

dy
M−1

»
s A(x)

−A(x) −s

–
M− εM−1dM

dy

ff »
a′

b′

–
for any potential A (not necessarily Klaus-Shaw) and we may choose any reasonable

dependent variable map x = x(y) and any invertible gauge matrix M.

Strategy: try to choose x(y) and M to make the coefficient matrix an ε-perturbation of

that for the Satsuma-Yajima potential, with some other eigenvalue parameter r:

dx

dy
M−1

»
s A(x)

−A(x) −s

–
M =

‖A‖1

π

»
r sech(y)

−sech(y) −r

–
.

For this equation to hold, the determinants must be equal:„
dx

dy

«2

(A(x)
2 − s

2
) =

„‖A‖1

π

«2

(sech
2
(y)− r

2
) .
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Analysis of the Eigenvalue Problem: Langer Transformation

The equation „
dx

dy

«2

(A(x)
2 − s

2
) =

„‖A‖1

π

«2

(sech
2
(y)− r

2
) .

should be viewed as a separable ODE for x = x(y). Under what conditions does this

ODE define a smooth, invertible change of coordinate?
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Analysis of the Eigenvalue Problem: Langer Transformation

The equation „
dx

dy

«2

(A(x)
2 − s

2
) =

„‖A‖1

π

«2

(sech
2
(y)− r

2
) .

should be viewed as a separable ODE for x = x(y). Under what conditions does this

ODE define a smooth, invertible change of coordinate?

A problem: the factors A(x)2 − s2 and sech2(y)− r2 are not of one sign. But, if A(x)

is a Klaus-Shaw potential, there are in each case exactly two turning points whenever

0 < s < maxA and 0 < r < 1.

A(x)2

x

x
− x+

sech2(y)

y
y
−

y+

s
2

r
2
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Analysis of the Eigenvalue Problem: Langer Transformation

Only for Klaus-Shaw potentials A can we match up the turning points by relating r and

s. For x− < x < x+ and y− < y < y+ the differential equation is:q
A(x)2 − s2 dx =

‖A‖1

π

q
sech2(y)− r2 dy

so for y± to correspond to x±, we must haveZ x+

x−

q
A(x)2 − s2 dx =

‖A‖1

π

Z y+

y−

q
sech2(y)− r2 dy = ‖A‖1(1− r) .

a relation between r and s.
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Analysis of the Eigenvalue Problem: Langer Transformation

Only for Klaus-Shaw potentials A can we match up the turning points by relating r and

s. For x− < x < x+ and y− < y < y+ the differential equation is:q
A(x)2 − s2 dx =

‖A‖1

π

q
sech2(y)− r2 dy

so for y± to correspond to x±, we must haveZ x+

x−

q
A(x)2 − s2 dx =

‖A‖1

π

Z y+

y−

q
sech2(y)− r2 dy = ‖A‖1(1− r) .

a relation between r and s.

Note: if we neglect the correction term in the Langer-transformed spectral problem, then

we know the eigenvalues exactly (Satsuma-Yajima):

r = 1− µ/2, 1− 3µ/2, 1− 5µ/2, . . . , where µ = πε/‖A‖1. Plugging these

approximate values into the above relation yields the Bohr-Sommerfeld formula of WKB

theory: it ought to give approximations of some kind or other to the true eigenvalues s.
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Ingredients in Rigorous Analysis

We don’t want to neglect the correction term. We want to estimate its effect.

1. We removed a determinant obstruction by picking x = x(y). Finish the job by writing

down the gauge matrix M. Then push the perturbation to formally higher order by

modifying M with a factor of the form I + εB.
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Ingredients in Rigorous Analysis

We don’t want to neglect the correction term. We want to estimate its effect.

1. We removed a determinant obstruction by picking x = x(y). Finish the job by writing

down the gauge matrix M. Then push the perturbation to formally higher order by

modifying M with a factor of the form I + εB.

2. Write the perturbed equation as a forced problem:

µ
d

dy

»
a′

b′

–
−

»
r sech(y)

−sech(y) −r

– »
a′

b′

–
= µ

2
g(y, r, µ)R

»
a′

b′

–
where g is a function built from the Langer transformation x = x(y) and R is a

constant rank one matrix.
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Ingredients in Rigorous Analysis

We don’t want to neglect the correction term. We want to estimate its effect.

1. We removed a determinant obstruction by picking x = x(y). Finish the job by writing

down the gauge matrix M. Then push the perturbation to formally higher order by

modifying M with a factor of the form I + εB.

2. Write the perturbed equation as a forced problem:

µ
d

dy

»
a′

b′

–
−

»
r sech(y)

−sech(y) −r

– »
a′

b′

–
= µ

2
g(y, r, µ)R

»
a′

b′

–
where g is a function built from the Langer transformation x = x(y) and R is a

constant rank one matrix.

3. “Solve” for a′ and b′ by inverting the Satsuma-Yajima operator on the left-hand side

by means of “variation of parameters”. This requires a basis of solutions of the

unperturbed problem, which are hypergeometric functions. This yields an integral

equation for a′ and b′.
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Ingredients in Rigorous Analysis
4. Estimate the hypergeometric resolvent for arbitrarily small µ. One expects these

estimates to resemble standard steepest-descent approximations for the Euler integral

representations. The issue is to obtain estimates that are uniform with respect to the

eigenvalue parameter r, especially near r = 0 and r = 1 (apparently much harder).
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representations. The issue is to obtain estimates that are uniform with respect to the

eigenvalue parameter r, especially near r = 0 and r = 1 (apparently much harder).

5. Use the above estimates to show that the perturbed equation has a solution decaying

as y → −∞ that is O(µ) close to the unperturbed decaying solution up to y = 0.

Construct and examine the roots of an appropriate Wronskian.
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If this procedure is successful, then the Bohr-Sommerfeld formula will be accurate to

order O(ε2), uniformly throughout the spectrum, and universality is established.
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Ingredients in Rigorous Analysis
4. Estimate the hypergeometric resolvent for arbitrarily small µ. One expects these

estimates to resemble standard steepest-descent approximations for the Euler integral

representations. The issue is to obtain estimates that are uniform with respect to the

eigenvalue parameter r, especially near r = 0 and r = 1 (apparently much harder).

5. Use the above estimates to show that the perturbed equation has a solution decaying

as y → −∞ that is O(µ) close to the unperturbed decaying solution up to y = 0.

Construct and examine the roots of an appropriate Wronskian.

If this procedure is successful, then the Bohr-Sommerfeld formula will be accurate to

order O(ε2), uniformly throughout the spectrum, and universality is established.

A wrinkle: the estimates we know how to obtain in step 4 are not sufficiently refined to

allow control of the integral equations for large y. Instead, for y < −1 (say) we

construct a different Langer transformation to the potential ey instead of sech(y). The

exponential potential problem can also be solved exactly, in terms of Bessel functions.

These integrals can be controlled for large y.
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Langer Transformations for Nonsemiclassical Problems: Homotopy
Method

Langer transformations may provide a method for proving exact spectral confinement

theorems like those of Klaus-Shaw and Bronski-Johnson. The key observation is: in both

the (FNLS) and (SG) spectral problems, the Langer transformation to the exactly solvable

case only exists if the correct monotonicity condition is satisfied! This should have

significance for finite ε not necessarily small.
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Langer Transformations for Nonsemiclassical Problems: Homotopy
Method

Langer transformations may provide a method for proving exact spectral confinement

theorems like those of Klaus-Shaw and Bronski-Johnson. The key observation is: in both

the (FNLS) and (SG) spectral problems, the Langer transformation to the exactly solvable

case only exists if the correct monotonicity condition is satisfied! This should have

significance for finite ε not necessarily small.

Here is the Langer-transformed spectral problem for (FNLS) with ε = 1:

d

dy

»
a′

b′

–
−

»
r sech(y)

−sech(y) −r

– »
a′

b′

–
= g(y, r, µ)R

»
a′

b′

–
We can only write the spectral problem in this form if the original A(·) was a Klaus-Shaw

potential. Introduce an artifical homotopy parameter h ∈ [0, 1] multiplying g.
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Langer Transformations for Nonsemiclassical Problems: Homotopy
Method

Langer transformations may provide a method for proving exact spectral confinement

theorems like those of Klaus-Shaw and Bronski-Johnson. The key observation is: in both

the (FNLS) and (SG) spectral problems, the Langer transformation to the exactly solvable

case only exists if the correct monotonicity condition is satisfied! This should have

significance for finite ε not necessarily small.

Here is the Langer-transformed spectral problem for (FNLS) with ε = 1:

d

dy

»
a′

b′

–
−

»
r sech(y)

−sech(y) −r

– »
a′

b′

–
= g(y, r, µ)R

»
a′

b′

–
We can only write the spectral problem in this form if the original A(·) was a Klaus-Shaw

potential. Introduce an artifical homotopy parameter h ∈ [0, 1] multiplying g.

When h = 0 the spectrum is known exactly, and is confined to the imaginary axis by

exact calculation. One could deduce the Klaus-Shaw theorem if one could show that as h

is increased to h = 1, the eigenvalues do not collide.
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Conclusions

Some ideas to take home:

• Each potential in a generalized eigenvalue problem for which the spectral data can be

found exactly using the theory of special functions should be thought of as defining a

universality class of potentials with similar local properties of the spectrum.
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Conclusions

Some ideas to take home:

• Each potential in a generalized eigenvalue problem for which the spectral data can be

found exactly using the theory of special functions should be thought of as defining a

universality class of potentials with similar local properties of the spectrum.

• A method of proving universality is based on Langer transformations: these combine a

linear gauge transformation with a nonlinear change of independent variable.

• Langer transformed spectral problems may also present an avenue to proving exact

spectral confinement theorems.

Thank You!


