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Abstract
A ∂ problem is a kind of generalization of a Riemann-Hilbert problem. We will describe how

some ∂ problems arise in the context of the orthogonal polynomial approach to random matrix

theory.
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Circular Ensembles and Universality

Consider the group U(N) of N ×N unitary matrices U equipped with a probability

measure of the form

dp(U) =
1

ZN

e
−NTrV (arg(U))

dHN(U) ,

where dHN denotes Haar measure and ZN is a normalization constant (partition

function). This is the circular ensemble with weight e−NV .

Spectral theorem: diagonalize U and integrate out the eigenvector variables (Haar

measure again). What remains is the joint law for the eigenvalues {zn = eiθn}N
n=1:

dp(θ1, . . . , θN) =
1

Z ′
N

·
Y
m<n

|eiθm − e
iθn|2 ·

NY
n=1

e
−NV (θn)

dθn .
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Circular Ensembles and Universality
Correlation functions are expressed in terms of orthogonal polynomials:

R
(n)
N (θ1, . . . , θn) = det(KN(θj, θk))j,k=1,...,n ,

where

KN(θ, φ) =

N−1X
n=0

pn(e
iθ
)pn(eiφ)e

−NV (θ)/2
e
−NV (φ)/2

,

and pn(z) = γn,nzn + · · · satisfies

1

2π

Z π

−π

pn(e
iθ
)pm(eiθ)e

−NV (θ)
dθ = δn,m .

Christoffel-Darboux formula:

KN(θ, φ) =
p∗N(eiθ)p∗N(eiφ)− pN(eiθ)pN(eiφ)

1− ei(θ−φ)
,

where if p(z) = c0 + c1z + · · ·+ cnzn, then p∗(z) := c0z
n + c1z

n−1 + · · ·+ cn.
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Circle Polynomials: Riemann-Hilbert Problem

Let e−V (θ) be a weight on the unit circle. Seek Mn(z), a

2× 2 matrix, with the following properties:

Analyticity: Mn(z) is analytic for z ∈ C \ Σ, taking

continuous boundary values Mn
±(z) for |z| = 1.

Jump Condition: The boundary values are related by

Mn
+(e

iθ
) = Mn

−(e
iθ
)

»
1 e−V (θ)e−inθ

0 1

–
.

Normalization: The matrix Mn(z) satisfies

lim
z→∞

Mn
(z)

»
z−n 0

0 zn

–
= I .

+ −
0

Σ: |z| = 1
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Circle Polynomials: Riemann-Hilbert Problem

Consider the first row of Mn(z).
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11−(eiθ), Mn
11(z) is entire.
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Consider the first row of Mn(z).

1. Because Mn
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11−(eiθ), Mn
11(z) is entire.

2. Because Mn
11(z)z−n → 1 as z →∞, Mn

11(z) is a monic polynomial of degree n.
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Circle Polynomials: Riemann-Hilbert Problem

Consider the first row of Mn(z).

1. Because Mn
11+(eiθ) = Mn

11−(eiθ), Mn
11(z) is entire.

2. Because Mn
11(z)z−n → 1 as z →∞, Mn

11(z) is a monic polynomial of degree n.

3. Because Mn
12+(eiθ) = Mn

11(e
iθ)e−NV (θ)e−inθ + Mn

12−(eiθ), by the Plemelj formula,

M
n
12(z) =

1

2πi

I
Mn

11(s)e
−NV (arg(s))s−n

s− z
ds + e(z)

where e(z) is an entire function.
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Circle Polynomials: Riemann-Hilbert Problem

Consider the first row of Mn(z).

1. Because Mn
11+(eiθ) = Mn

11−(eiθ), Mn
11(z) is entire.

2. Because Mn
11(z)z−n → 1 as z →∞, Mn

11(z) is a monic polynomial of degree n.

3. Because Mn
12+(eiθ) = Mn

11(e
iθ)e−NV (θ)e−inθ + Mn

12−(eiθ), by the Plemelj formula,

M
n
12(z) =

1

2πi

I
Mn

11(s)e
−NV (arg(s))s−n

s− z
ds + e(z)

where e(z) is an entire function.

4. Because Mn
12(z)zn → 0 as z →∞, we must have e(z) ≡ 0 and

1

2π

Z π

−π

M
n
11(e

iθ
)e
−imθ

e
−NV (θ)

dθ = 0 , m = 0, 1, 2, . . . , n− 1 .
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Circle Polynomials: Riemann-Hilbert Problem

Consider the first row of Mn(z).

1. Because Mn
11+(eiθ) = Mn

11−(eiθ), Mn
11(z) is entire.

2. Because Mn
11(z)z−n → 1 as z →∞, Mn

11(z) is a monic polynomial of degree n.

3. Because Mn
12+(eiθ) = Mn

11(e
iθ)e−NV (θ)e−inθ + Mn

12−(eiθ), by the Plemelj formula,

M
n
12(z) =

1

2πi

I
Mn

11(s)e
−NV (arg(s))s−n

s− z
ds + e(z)

where e(z) is an entire function.

4. Because Mn
12(z)zn → 0 as z →∞, we must have e(z) ≡ 0 and

1

2π

Z π

−π

M
n
11(e

iθ
)e
−imθ

e
−NV (θ)

dθ = 0 , m = 0, 1, 2, . . . , n− 1 .

This result identifies Mn
11(z) with πn(z), the monic orthogonal polynomial of degree n.
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Analytic Weights: Steepest Descent Asymptotics

The simplest case is to take N = 1 and let n →∞. Make the substitution

Nn
(z) :=

(
Mn(z) , |z| < 1 ,

Mn(z)z−nσ3 , |z| > 1 .

This removes the non-identity asymptotics for large z and the jump condition for Nn(z)

becomes:

Nn
+(e

iθ
) = Nn

−(e
iθ
)

»
einθ e−V (θ)

0 e−inθ

–
, z ∈ Σ .

Then, note the factorization:»
einθ e−V (θ)

0 e−inθ

–
=

»
1 0

e−inθeV (θ) 1

– "
0 e−V (θ)

−eV (θ) 0

# »
1 0

einθeV (θ) 1

–
.
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Analytic Weights: Steepest Descent Asymptotics

When V is analytic, we may create a new piecewise-analytic unknown as follows:

Pn
(z) :=

8>>>>>>>>>>>><>>>>>>>>>>>>:

Nn(z)

"
1 0

−zneV (−i log(z)) 1

#
, z ∈ Ω+ ,

Nn(z)

"
1 0

z−neV (−i log(z)) 1

#
, z ∈ Ω− ,

Nn(z) , otherwise .

ΣΣ+ Σ
−

Ω
−

Ω+

0
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Analytic Weights: Steepest Descent Asymptotics

When V is analytic, we may create a new piecewise-analytic unknown as follows:

Pn
(z) :=

8>>>>>>>>>>>><>>>>>>>>>>>>:

Nn(z)

"
1 0

−zneV (−i log(z)) 1

#
, z ∈ Ω+ ,

Nn(z)

"
1 0

z−neV (−i log(z)) 1

#
, z ∈ Ω− ,

Nn(z) , otherwise .

ΣΣ+ Σ
−

Ω
−

Ω+

0

Then the jump condition for Pn(z) is exponentially negligible for large n except:

Pn
+(e

iθ
) = Pn

−(e
iθ
)

"
0 e−V (θ)

−eV (θ) 0

#
, z = e

iθ ∈ Σ .
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Analytic Weights: Steepest Descent Asymptotics

All important n-dependence has been explicitly extracted! This approach leads to a

model Riemann-Hilbert problem independent of n: find a 2× 2 matrix Ṗ(z) with the

following properties:
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Analytic Weights: Steepest Descent Asymptotics

All important n-dependence has been explicitly extracted! This approach leads to a

model Riemann-Hilbert problem independent of n: find a 2× 2 matrix Ṗ(z) with the

following properties:

Analyticity: Ṗ(z) is analytic for z ∈ C \ Σ (that is, for |z| 6= 1), and takes

continuous boundary values Ṗ±(z) on Σ.

Jump Condition: The boundary values are related by

Ṗ+(e
iθ
) = Ṗ−(e

iθ
)

"
0 e−V (θ)

−eV (θ) 0

#
.

Normalization: The matrix Ṗ(z) satisfies limz→∞ Ṗ(z) = I.
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Analytic Weights: Steepest Descent Asymptotics
This problem has a unique explicit solution in terms of the Szegő function S(z):

Ṗ(z) :=

8>>>>>>><>>>>>>>:

"
S(z) 0

0 S(z)−1

#
, |z| > 1

"
0 S(z)

−S(z)−1 0

#
, |z| < 1 ,

S(z) := exp

„
−

1

2πi

I
Σ

V (arg(s)) ds

s− z

«
.
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Analytic Weights: Steepest Descent Asymptotics
This problem has a unique explicit solution in terms of the Szegő function S(z):

Ṗ(z) :=

8>>>>>>><>>>>>>>:

"
S(z) 0

0 S(z)−1

#
, |z| > 1

"
0 S(z)

−S(z)−1 0

#
, |z| < 1 ,

S(z) := exp

„
−

1

2πi

I
Σ

V (arg(s)) ds

s− z

«
.

It remains to control the errors. Compare P(z) with

Ṗ(z). Define the discrepancy: Hn(z) := P(z)Ṗ(z)−1.

This matrix is analytic except on Σ±.

Σ+ Σ−0
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Analytic Weights: Steepest Descent Asymptotics

The discrepancy matrix Hn(z) satisfies a “small-norm” Riemann-Hilbert problem for n

large: seek Hn(z), 2× 2, with the following properties:

Analyticity: Hn(z) is analytic for z ∈ C\(Σ+∪Σ−), and takes continuous boundary

values Hn
±(z) on these contours.
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values Hn
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Jump Condition: The boundary values are related by

Hn
+(z) = Hn

−(z) (I + exponentially small for n large) , z ∈ Σ± .
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Analytic Weights: Steepest Descent Asymptotics

The discrepancy matrix Hn(z) satisfies a “small-norm” Riemann-Hilbert problem for n

large: seek Hn(z), 2× 2, with the following properties:

Analyticity: Hn(z) is analytic for z ∈ C\(Σ+∪Σ−), and takes continuous boundary

values Hn
±(z) on these contours.

Jump Condition: The boundary values are related by

Hn
+(z) = Hn

−(z) (I + exponentially small for n large) , z ∈ Σ± .

Normalization: The matrix Hn(z) satisfies limz→∞ Hn(z) = I.

Riemann-Hilbert problems are equivalent to systems of singular integral equations (Cauchy kernels) on the

system of jump contours. The integral equations for small-norm problems can be solved by Neumann series.

This yields: Hn(z) ≈ I, with error terms given by an asymptotic series.
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Nonanalytic Weights: ∂ Steepest Descent Method

If V is not analytic, however smooth, this technique fails. We need an alternative to

analytic continuation for extending a smooth function from the unit circle.

Ref: McLaughlin & M, IMRP, 2006
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Nonanalytic Weights: ∂ Steepest Descent Method

If V is not analytic, however smooth, this technique fails. We need an alternative to

analytic continuation for extending a smooth function from the unit circle.

Let x = r cos θ and y = r sin θ where z = x + iy. Here is a formula for an “almost

analytic extension” of V (θ):

EmV (r, θ) :=

m−1X
p=0

V (p)(θ)

p!
(−i log(r))

p
.

Note that Σ is characterized by r = 1, or equivalently log(r) = 0. Therefore

EmV (1, θ) = V (θ) so we have indeed defined an extension of V from the unit circle.

Ref: McLaughlin & M, IMRP, 2006
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Nonanalytic Weights: ∂ Steepest Descent Method

What about “near analyticity”? Analytic functions f are characterized by the

Cauchy-Riemann equations ∂f = 0 where

∂ :=
∂

∂z
=

1

2

„
∂

∂x
+ i

∂

∂y

«
=

eiθ

2

„
∂

∂r
+

i

r

∂

∂θ

«
.

Ref: McLaughlin & M, IMRP, 2006
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Nonanalytic Weights: ∂ Steepest Descent Method

What about “near analyticity”? Analytic functions f are characterized by the

Cauchy-Riemann equations ∂f = 0 where

∂ :=
∂

∂z
=

1

2

„
∂

∂x
+ i

∂

∂y

«
=

eiθ

2

„
∂

∂r
+

i

r

∂

∂θ

«
.

Applying ∂ to EmV (r, θ):

∂EmV (r, θ) =
ieiθ

2r(m− 1)!
V

(m)
(θ)(−i log(r))

m−1
(sum telescopes).

This is not zero, but it vanishes to order m− 1 as r → 1.

Ref: McLaughlin & M, IMRP, 2006
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Nonanalytic Weights: ∂ Steepest Descent Method

What about “near analyticity”? Analytic functions f are characterized by the

Cauchy-Riemann equations ∂f = 0 where

∂ :=
∂

∂z
=

1

2

„
∂

∂x
+ i

∂

∂y

«
=

eiθ

2

„
∂

∂r
+

i

r

∂

∂θ

«
.

Applying ∂ to EmV (r, θ):

∂EmV (r, θ) =
ieiθ

2r(m− 1)!
V

(m)
(θ)(−i log(r))

m−1
(sum telescopes).

This is not zero, but it vanishes to order m− 1 as r → 1.

(If V is analytic, then the infinite series E∞V (r, θ) converges uniformly for r in a

neighborhood of r = 1 and ∂E∞V (r, θ) = 0; in other words, E∞V (r, θ) is a series

representation of the analytic continuation of V .)

Ref: McLaughlin & M, IMRP, 2006
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Nonanalytic Weights: ∂ Steepest Descent Method

We use an extension EmV of V to make use of the factorization of the jump matrix for

Nn(z):

Pn
m(r, θ) :=

8>>>>>>><>>>>>>>:

Nn
(re

iθ
)

"
1 0

(reiθ)−nB(log(r))eEmV (r,θ) 1

#
, r > 1

Nn
(re

iθ
)

"
1 0

−(reiθ)nB(log(r))eEmV (r,θ) 1

#
, r < 1 .

Here B(·) is a C∞ “bump function”: −2 −1 1 2

x

B(x)

B(x) ≡ 1

B(x) ≡ 0 B(x) ≡ 0

Ref: McLaughlin & M, IMRP, 2006
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Nonanalytic Weights: ∂ Steepest Descent Method

We may expect that Pn
m(r, θ) ≈ Ṗ(z) in some sense. To analyze, define the discrepancy

by Hn
m(r, θ) := Pn

m(r, θ)Ṗ(reiθ)−1.

Ref: McLaughlin & M, IMRP, 2006
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Nonanalytic Weights: ∂ Steepest Descent Method

We may expect that Pn
m(r, θ) ≈ Ṗ(z) in some sense. To analyze, define the discrepancy

by Hn
m(r, θ) := Pn

m(r, θ)Ṗ(reiθ)−1.

The discrepancy Hn
m(r, θ) satisfies another kind of problem, a ∂ problem: seek

Hn
m(r, θ), 2× 2, with the following properties:

Smoothness: Hn
m(r, θ) is a Lipschitz continuous function on the whole polar plane.

Ref: McLaughlin & M, IMRP, 2006
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Nonanalytic Weights: ∂ Steepest Descent Method

We may expect that Pn
m(r, θ) ≈ Ṗ(z) in some sense. To analyze, define the discrepancy

by Hn
m(r, θ) := Pn

m(r, θ)Ṗ(reiθ)−1.

The discrepancy Hn
m(r, θ) satisfies another kind of problem, a ∂ problem: seek

Hn
m(r, θ), 2× 2, with the following properties:

Smoothness: Hn
m(r, θ) is a Lipschitz continuous function on the whole polar plane.

Deviation From Analyticity: We have

∂Hn
m(r, θ) = Hn

m(r, θ)Wn
m(r, θ)

where Wn
m(r, θ) is known.

Ref: McLaughlin & M, IMRP, 2006
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Nonanalytic Weights: ∂ Steepest Descent Method

We may expect that Pn
m(r, θ) ≈ Ṗ(z) in some sense. To analyze, define the discrepancy

by Hn
m(r, θ) := Pn

m(r, θ)Ṗ(reiθ)−1.

The discrepancy Hn
m(r, θ) satisfies another kind of problem, a ∂ problem: seek

Hn
m(r, θ), 2× 2, with the following properties:

Smoothness: Hn
m(r, θ) is a Lipschitz continuous function on the whole polar plane.

Deviation From Analyticity: We have

∂Hn
m(r, θ) = Hn

m(r, θ)Wn
m(r, θ)

where Wn
m(r, θ) is known.

Normalization: limr→∞ Hn
m(r, θ) = I.

Ref: McLaughlin & M, IMRP, 2006
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Nonanalytic Weights: ∂ Steepest Descent Method

The matrix Wn
m(r, θ) is nonzero only in the annulus

| log(r)| < 2.
0

Ref: McLaughlin & M, IMRP, 2006
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Nonanalytic Weights: ∂ Steepest Descent Method

The matrix Wn
m(r, θ) is nonzero only in the annulus

| log(r)| < 2. Moreover, it is small when n is large:
0

W
n

m
(r, θ) exponentially small from rn and r−n

Ref: McLaughlin & M, IMRP, 2006
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Nonanalytic Weights: ∂ Steepest Descent Method

The matrix Wn
m(r, θ) is nonzero only in the annulus

| log(r)| < 2. Moreover, it is small when n is large:
0

Wn
m(r,θ) exponentially small from rn and r−n

W
n

m
(r, θ) small from near analyticity of EmV (r, θ)

Ref: McLaughlin & M, IMRP, 2006
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Nonanalytic Weights: ∂ Steepest Descent Method

The matrix Wn
m(r, θ) is nonzero only in the annulus

| log(r)| < 2. Moreover, it is small when n is large:
0

Wn
m(r,θ) exponentially small from rn and r−n

W
n

m
(r, θ) small from near analyticity of EmV (r, θ)

This makes the ∂ problem for Hn
m(r, θ) a kind of small-norm problem that can be

analyzed with great precision, more easily than small-norm Riemann-Hilbert problems due

to local integrability of the Cauchy kernel on the plane.

Ref: McLaughlin & M, IMRP, 2006
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Nongaussian Unitary Ensemble With Convex Exponential Weights

In a similar way as for the circular ensembles, the measure on N ×N Hermitian matrices

dp(M) =
1

ZN

e
−Ntr(V (M))

dM , dM = Lebesgue measure on independent entries

leads to the joint law for the real eigenvalues x1 ≤ · · · ≤ xN :

dp(x1, . . . , xN) =
1

Z ′
N

·
Y
m<n

(xn − xm)
2 ·

NY
n=1

e
−NV (xn)

dxn .

The correlation functions have determinantal form

R
(n)
N (x1, . . . , xn) = det(KN(xj, xk))j,k=1,...,n with kernel

KN(x, y) :=
N−1X
n=0

pn(x)pn(y)e
−NV (x)/2

e
−NV (y)/2

,

and pn(x) is the orthonormal polynomial of degree n for the measure e−NV (x) dx on R.
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Orthogonal Polynomials on the Real Line: Nonanalytic Weights

By the Christoffel-Darboux formula, asymptotic analysis of correlation functions boils

down, as for circular ensembles, to that of the orthonormal polynomials pn(x).
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Orthogonal Polynomials on the Real Line: Nonanalytic Weights

By the Christoffel-Darboux formula, asymptotic analysis of correlation functions boils

down, as for circular ensembles, to that of the orthonormal polynomials pn(x).

There is a Riemann-Hilbert problem encoding pn(x) due to Fokas-Its-Kitaev. A new

feature of the analysis that is essential to the case of eigenvalues in R (noncompact)

versus in S1 (compact) is the contribution of finite endpoints of support of the limiting

distribution of eigenvalues (semicircle law in the Gaussian case).
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Orthogonal Polynomials on the Real Line: Nonanalytic Weights

By the Christoffel-Darboux formula, asymptotic analysis of correlation functions boils

down, as for circular ensembles, to that of the orthonormal polynomials pn(x).

There is a Riemann-Hilbert problem encoding pn(x) due to Fokas-Its-Kitaev. A new

feature of the analysis that is essential to the case of eigenvalues in R (noncompact)

versus in S1 (compact) is the contribution of finite endpoints of support of the limiting

distribution of eigenvalues (semicircle law in the Gaussian case).

In work in progress with K. McLaughlin, we are extending the ∂ method to handle

support endpoints. Our aim is to establish universality of key limiting kernels (sine kernel

in the bulk, Airy kernel at the edge leading to the Tracy-Widom law for the fluctuations of

the extreme eigenvalues) describing local eigenvalue statistics, beyond the analytic class

of weights V .
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Normal Matrix Models

The normal matrix models give rise to a ∂ problem directly, rather than by way of

modifications to a Riemann-Hilbert problem.

Refs: Chau & Zaboronsky, 1998; Kostov et. al. 2001
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Normal Matrix Models

The normal matrix models give rise to a ∂ problem directly, rather than by way of

modifications to a Riemann-Hilbert problem.

Consider the set NN of N ×N complex matrices M that are normal : [M, M†] = 0.

Let X := 1
2(M + M†) and Y := 1

2i(M−M†) be the Hermitian “real” and “imaginary”

parts of M, and let V (x, y) be a real function on R2 with sufficient growth at infinity.

Equip NN with the probability distribution

dp(M) =
1

ZN

e
−Ntr(V (X,Y))

dµ(M)

where µ is the measure on NN induced by the flat metric on all N ×N complex

matrices.

Refs: Chau & Zaboronsky, 1998; Kostov et. al. 2001
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Normal Matrix Models

Diagonalization of M and integrating out the eigenvectors yields the joint law for the

(generally complex) eigenvalues zn = xn + iyn in the form

dp(x1, y1, . . . , xN , yN) =
1

Z ′
N

Y
j<k

|zj − zk|2 ·
NY

n=1

e
−NV (xn,yn)

dxn dyn .

Refs: Chau & Zaboronsky, 1998; Kostov et. al. 2001
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Diagonalization of M and integrating out the eigenvectors yields the joint law for the

(generally complex) eigenvalues zn = xn + iyn in the form

dp(x1, y1, . . . , xN , yN) =
1

Z ′
N

Y
j<k

|zj − zk|2 ·
NY

n=1

e
−NV (xn,yn)

dxn dyn .

The correlation functions have determinantal form

R
(n)
N (x1, y1, . . . , xn, yn) = det(KN(zj, zk))j,k=1,...,n with kernel

KN(z, w) :=

N−1X
n=0

pn(z)pn(w)e
−NV (<(z),=(z))/2

e
−NV (<(w),=(w))/2

.

Here pn(z) is the orthonormal polynomial of degree n for the weight e−NV (x,y) dx dy.

Refs: Chau & Zaboronsky, 1998; Kostov et. al. 2001
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Diagonalization of M and integrating out the eigenvectors yields the joint law for the

(generally complex) eigenvalues zn = xn + iyn in the form

dp(x1, y1, . . . , xN , yN) =
1

Z ′
N

Y
j<k

|zj − zk|2 ·
NY

n=1

e
−NV (xn,yn)

dxn dyn .

The correlation functions have determinantal form

R
(n)
N (x1, y1, . . . , xn, yn) = det(KN(zj, zk))j,k=1,...,n with kernel

KN(z, w) :=

N−1X
n=0

pn(z)pn(w)e
−NV (<(z),=(z))/2

e
−NV (<(w),=(w))/2

.

Here pn(z) is the orthonormal polynomial of degree n for the weight e−NV (x,y) dx dy.

There is, unfortunately, no Christoffel-Darboux formula to telescope the sum in

KN(z, w). Nonetheless, information about the asymptotic behavior of eigenvalue

statistics lies in the large degree behavior of these orthogonal polynomials.

Refs: Chau & Zaboronsky, 1998; Kostov et. al. 2001
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Twisted ∂ Problem

The orthogonal polynomials with respect to e−NV (x,y) dx dy are characterized directly by

a slightly modified ∂ problem. Let n and N be positive integers, with n ≤ N , and seek

Mn(x, y), a 2× 2 matrix-valued function on R2 with the following properties:

Smoothness: Mn(x, y) is a Lipschitz continuous function on R2.

Deviation from Analyticity: We have

∂Mn
(x, y) = Mn(x, y)

»
0 e−NV (x,y)

0 0

–
, (x, y) ∈ R2

.

Normalization: lim
x,y→∞

Mn
(x, y)

»
(x + iy)−n 0

0 (x + iy)n

–
= I .

Then, M11(x, y) is the monic orthogonal polynomial of degree n in z = x + iy, with

respect to the measure e−NV (x,y) dx dy.
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Twisted ∂ Problem

Here are some comments about the asymptotic analysis of such a problem for

n, N →∞ with 0 < ε ≤ n/N ≤ 1:

• Conjugation by an appropriate equilibrium measure is required to, in particular, establish

identity asymptotics for large (x, y).

• Furthermore, the use of the equilibrium measure associated with the potential V (x, y)

in the plane clearly makes the contribution from points outside the support exponentially

negligible.

• A small-norm problem for a matrix Hn(x, y) may be converted to a closed system of

integral equations solvable by Neumann series iteration with the introduction of the

conjugate matrix Hn(x, y) as a second unknown. This is not an essential modification

of the method.

• However, a genuinely two-dimensional analogue of the three-factor factorization and

subsequent deformation of Riemann-Hilbert problems is required for this problem. This

is the subject of current work.
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Some ideas to take home:

• A ∂ problem is a generalization of a Riemann-Hilbert problem in which nonanalyticity

is “smeared-out” over a two-dimensional region.

• ∂ problems can arise in random matrix theory through systematic deformations of

Riemann-Hilbert problems characterizing relevant systems of orthogonal polynomials

(the ∂ steepest descent method).

• ∂ problems can also arise more fundamentally in random matrix theory associated

with certain ensembles of nonhermitian matrices whose eigenvalues are distributed

throughout the complex plane.

Thank You!


