$\bar{\partial}$ Problems in Random Matrix Theory

Peter D. Miller
Department of Mathematics, University of Michigan

April 21, 2007

Abstract

A $\bar{\partial}$ problem is a kind of generalization of a Riemann-Hilbert problem. We will describe how some $\bar{\partial}$ problems arise in the context of the orthogonal polynomial approach to random matrix theory.

Circular Ensembles and Universality

Consider the group $U(N)$ of $N \times N$ unitary matrices \mathbf{U} equipped with a probability measure of the form

$$
d p(\mathbf{U})=\frac{1}{Z_{N}} e^{-N \operatorname{Tr} V(\arg (\mathbf{U}))} d H_{N}(\mathbf{U})
$$

where $d H_{N}$ denotes Haar measure and Z_{N} is a normalization constant (partition function). This is the circular ensemble with weight $e^{-N V}$.

Spectral theorem: diagonalize \mathbf{U} and integrate out the eigenvector variables (Haar measure again). What remains is the joint law for the eigenvalues $\left\{z_{n}=e^{i \theta_{n}}\right\}_{n=1}^{N}$:

$$
d p\left(\theta_{1}, \ldots, \theta_{N}\right)=\frac{1}{Z_{N}^{\prime}} \cdot \prod_{m<n}\left|e^{i \theta_{m}}-e^{i \theta_{n}}\right|^{2} \cdot \prod_{n=1}^{N} e^{-N V\left(\theta_{n}\right)} d \theta_{n}
$$

MÁTHEMATICS
 University of Michiga

Circular Ensembles and Universality

Correlation functions are expressed in terms of orthogonal polynomials:

$$
R_{N}^{(n)}\left(\theta_{1}, \ldots, \theta_{n}\right)=\operatorname{det}\left(K_{N}\left(\theta_{j}, \theta_{k}\right)\right)_{j, k=1, \ldots, n}
$$

where

$$
K_{N}(\theta, \phi)=\sum_{n=0}^{N-1} p_{n}\left(e^{i \theta}\right) \overline{p_{n}\left(e^{i \phi}\right)} e^{-N V(\theta) / 2} e^{-N V(\phi) / 2}
$$

and $p_{n}(z)=\gamma_{n, n} z^{n}+\cdots$ satisfies

$$
\frac{1}{2 \pi} \int_{-\pi}^{\pi} p_{n}\left(e^{i \theta}\right) \overline{p_{m}\left(e^{i \theta}\right)} e^{-N V(\theta)} d \theta=\delta_{n, m} .
$$

Christoffel-Darboux formula:

$$
K_{N}(\theta, \phi)=\frac{p_{N}^{*}\left(e^{i \theta}\right) \overline{p_{N}^{*}\left(e^{i \phi}\right)}-p_{N}\left(e^{i \theta}\right) \overline{p_{N}\left(e^{i \phi}\right)}}{1-e^{i(\theta-\phi)}}
$$

where if $p(z)=c_{0}+c_{1} z+\cdots+c_{n} z^{n}$, then $p^{*}(z):=\overline{c_{0}} z^{n}+\overline{c_{1}} z^{n-1}+\cdots+\overline{c_{n}}$.

MATHEMATICS
 University of Michiga

Circle Polynomials: Riemann-Hilbert Problem

Let $e^{-V(\theta)}$ be a weight on the unit circle. Seek $\mathbf{M}^{n}(z)$, a 2×2 matrix, with the following properties:

Analyticity: $\mathbf{M}^{n}(z)$ is analytic for $z \in \mathbb{C} \backslash \Sigma$, taking continuous boundary values $\mathbf{M}_{ \pm}^{n}(z)$ for $|z|=1$. Jump Condition: The boundary values are related by

$$
\mathbf{M}_{+}^{n}\left(e^{i \theta}\right)=\mathbf{M}_{-}^{n}\left(e^{i \theta}\right)\left[\begin{array}{cc}
1 & e^{-V(\theta)} e^{-i n \theta} \\
0 & 1
\end{array}\right]
$$

Normalization: The matrix $\mathbf{M}^{n}(z)$ satisfies

$$
\lim _{z \rightarrow \infty} \mathbf{M}^{n}(z)\left[\begin{array}{cc}
z^{-n} & 0 \\
0 & z^{n}
\end{array}\right]=\mathbb{I}
$$

Circle Polynomials: Riemann-Hilbert Problem

Consider the first row of $\mathbf{M}^{n}(z)$.

Circle Polynomials: Riemann-Hilbert Problem

Consider the first row of $\mathrm{M}^{n}(z)$.

1. Because $M_{11+}^{n}\left(e^{i \theta}\right)=M_{11-}^{n}\left(e^{i \theta}\right), M_{11}^{n}(z)$ is entire.

Circle Polynomials: Riemann-Hilbert Problem

Consider the first row of $\mathbf{M}^{n}(z)$.

1. Because $M_{11+}^{n}\left(e^{i \theta}\right)=M_{11-}^{n}\left(e^{i \theta}\right), M_{11}^{n}(z)$ is entire.
2. Because $M_{11}^{n}(z) z^{-n} \rightarrow 1$ as $z \rightarrow \infty, M_{11}^{n}(z)$ is a monic polynomial of degree n.

Circle Polynomials: Riemann-Hilbert Problem

Consider the first row of $\mathbf{M}^{n}(z)$.

1. Because $M_{11+}^{n}\left(e^{i \theta}\right)=M_{11-}^{n}\left(e^{i \theta}\right), M_{11}^{n}(z)$ is entire.
2. Because $M_{11}^{n}(z) z^{-n} \rightarrow 1$ as $z \rightarrow \infty, M_{11}^{n}(z)$ is a monic polynomial of degree n.
3. Because $M_{12+}^{n}\left(e^{i \theta}\right)=M_{11}^{n}\left(e^{i \theta}\right) e^{-N V(\theta)} e^{-i n \theta}+M_{12-}^{n}\left(e^{i \theta}\right)$, by the Plemelj formula,

$$
M_{12}^{n}(z)=\frac{1}{2 \pi i} \oint \frac{M_{11}^{n}(s) e^{-N V(\arg (s))} s^{-n}}{s-z} d s+e(z)
$$

where $e(z)$ is an entire function.

Circle Polynomials: Riemann-Hilbert Problem

Consider the first row of $\mathbf{M}^{n}(z)$.

1. Because $M_{11+}^{n}\left(e^{i \theta}\right)=M_{11-}^{n}\left(e^{i \theta}\right), M_{11}^{n}(z)$ is entire.
2. Because $M_{11}^{n}(z) z^{-n} \rightarrow 1$ as $z \rightarrow \infty, M_{11}^{n}(z)$ is a monic polynomial of degree n.
3. Because $M_{12+}^{n}\left(e^{i \theta}\right)=M_{11}^{n}\left(e^{i \theta}\right) e^{-N V(\theta)} e^{-i n \theta}+M_{12-}^{n}\left(e^{i \theta}\right)$, by the Plemelj formula,

$$
M_{12}^{n}(z)=\frac{1}{2 \pi i} \oint \frac{M_{11}^{n}(s) e^{-N V(\arg (s))} s^{-n}}{s-z} d s+e(z)
$$

where $e(z)$ is an entire function.
4. Because $M_{12}^{n}(z) z^{n} \rightarrow 0$ as $z \rightarrow \infty$, we must have $e(z) \equiv 0$ and

$$
\frac{1}{2 \pi} \int_{-\pi}^{\pi} M_{11}^{n}\left(e^{i \theta}\right) e^{-i m \theta} e^{-N V(\theta)} d \theta=0, \quad m=0,1,2, \ldots, n-1
$$

Circle Polynomials: Riemann-Hilbert Problem

Consider the first row of $\mathbf{M}^{n}(z)$.

1. Because $M_{11+}^{n}\left(e^{i \theta}\right)=M_{11-}^{n}\left(e^{i \theta}\right), M_{11}^{n}(z)$ is entire.
2. Because $M_{11}^{n}(z) z^{-n} \rightarrow 1$ as $z \rightarrow \infty, M_{11}^{n}(z)$ is a monic polynomial of degree n.
3. Because $M_{12+}^{n}\left(e^{i \theta}\right)=M_{11}^{n}\left(e^{i \theta}\right) e^{-N V(\theta)} e^{-i n \theta}+M_{12-}^{n}\left(e^{i \theta}\right)$, by the Plemelj formula,

$$
M_{12}^{n}(z)=\frac{1}{2 \pi i} \oint \frac{M_{11}^{n}(s) e^{-N V(\arg (s))} s^{-n}}{s-z} d s+e(z)
$$

where $e(z)$ is an entire function.
4. Because $M_{12}^{n}(z) z^{n} \rightarrow 0$ as $z \rightarrow \infty$, we must have $e(z) \equiv 0$ and

$$
\frac{1}{2 \pi} \int_{-\pi}^{\pi} M_{11}^{n}\left(e^{i \theta}\right) e^{-i m \theta} e^{-N V(\theta)} d \theta=0, \quad m=0,1,2, \ldots, n-1
$$

This result identifies $M_{11}^{n}(z)$ with $\pi_{n}(z)$, the monic orthogonal polynomial of degree n.

Analytic Weights: Steepest Descent Asymptotics

The simplest case is to take $N=1$ and let $n \rightarrow \infty$. Make the substitution

$$
\mathbf{N}^{n}(z):= \begin{cases}\mathbf{M}^{n}(z), & |z|<1 \\ \mathbf{M}^{n}(z) z^{-n \sigma_{3}}, & |z|>1\end{cases}
$$

This removes the non-identity asymptotics for large z and the jump condition for $\mathbf{N}^{n}(z)$ becomes:

$$
\mathbf{N}_{+}^{n}\left(e^{i \theta}\right)=\mathbf{N}_{-}^{n}\left(e^{i \theta}\right)\left[\begin{array}{cc}
e^{i n \theta} & e^{-V(\theta)} \\
0 & e^{-i n \theta}
\end{array}\right], \quad z \in \Sigma
$$

Then, note the factorization:

$$
\left[\begin{array}{cc}
e^{i n \theta} & e^{-V(\theta)} \\
0 & e^{-i n \theta}
\end{array}\right]=\left[\begin{array}{cc}
1 & 0 \\
e^{-i n \theta} e^{V(\theta)} & 1
\end{array}\right]\left[\begin{array}{cc}
0 & e^{-V(\theta)} \\
-e^{V(\theta)} & 0
\end{array}\right]\left[\begin{array}{cc}
1 & 0 \\
e^{i n \theta} e^{V(\theta)} & 1
\end{array}\right] .
$$

Analytic Weights: Steepest Descent Asymptotics

When V is analytic, we may create a new piecewise-analytic unknown as follows:

$$
\mathbf{P}^{n}(z):= \begin{cases}\mathbf{N}^{n}(z)\left[\begin{array}{cc}
1 & 0 \\
-z^{n} e^{V(-i \log (z))} & 1
\end{array}\right], & z \in \Omega_{+}, \\
\mathbf{N}^{n}(z)\left[\begin{array}{cc}
1 & 0 \\
z^{-n} e^{V(-i \log (z))} & 1
\end{array}\right], & z \in \Omega_{-}, \\
\mathbf{N}^{n}(z), & \text { otherwise. }\end{cases}
$$

Analytic Weights: Steepest Descent Asymptotics

When V is analytic, we may create a new piecewise-analytic unknown as follows:

$$
\mathbf{P}^{n}(z):= \begin{cases}\mathbf{N}^{n}(z)\left[\begin{array}{cc}
1 & 0 \\
-z^{n} e^{V(-i \log (z))} & 1
\end{array}\right], \quad z \in \Omega_{+}, \\
\mathbf{N}^{n}(z)\left[\begin{array}{cc}
1 & 0 \\
z^{-n} e^{V(-i \log (z))} & 1
\end{array}\right], \quad z \in \Omega_{-}, \\
\mathbf{N}^{n}(z) & \text { otherwise. }\end{cases}
$$

Then the jump condition for $\mathbf{P}^{n}(z)$ is exponentially negligible for large n except:

$$
\mathbf{P}_{+}^{n}\left(e^{i \theta}\right)=\mathbf{P}_{-}^{n}\left(e^{i \theta}\right)\left[\begin{array}{cc}
0 & e^{-V(\theta)} \\
-e^{V(\theta)} & 0
\end{array}\right], \quad z=e^{i \theta} \in \Sigma
$$

Analytic Weights: Steepest Descent Asymptotics

All important n-dependence has been explicitly extracted! This approach leads to a model Riemann-Hilbert problem independent of n : find a 2×2 matrix $\dot{\mathbf{P}}(z)$ with the following properties:

Analytic Weights: Steepest Descent Asymptotics

All important n-dependence has been explicitly extracted! This approach leads to a model Riemann-Hilbert problem independent of n : find a 2×2 matrix $\dot{\mathbf{P}}(z)$ with the following properties:

Analyticity: $\dot{\mathbf{P}}(z)$ is analytic for $z \in \mathbb{C} \backslash \Sigma$ (that is, for $|z| \neq 1$), and takes continuous boundary values $\dot{\mathrm{P}}_{ \pm}(z)$ on Σ.

Analytic Weights: Steepest Descent Asymptotics

All important n-dependence has been explicitly extracted! This approach leads to a model Riemann-Hilbert problem independent of n : find a 2×2 matrix $\dot{\mathbf{P}}(z)$ with the following properties:

Analyticity: $\dot{\mathbf{P}}(z)$ is analytic for $z \in \mathbb{C} \backslash \Sigma$ (that is, for $|z| \neq 1$), and takes continuous boundary values $\dot{\mathrm{P}}_{ \pm}(z)$ on Σ.
Jump Condition: The boundary values are related by

$$
\dot{\mathbf{P}}_{+}\left(e^{i \theta}\right)=\dot{\mathbf{P}}_{-}\left(e^{i \theta}\right)\left[\begin{array}{cc}
0 & e^{-V(\theta)} \\
-e^{V(\theta)} & 0
\end{array}\right] .
$$

Analytic Weights: Steepest Descent Asymptotics

All important n-dependence has been explicitly extracted! This approach leads to a model Riemann-Hilbert problem independent of n : find a 2×2 matrix $\dot{\mathbf{P}}(z)$ with the following properties:

Analyticity: $\dot{\mathbf{P}}(z)$ is analytic for $z \in \mathbb{C} \backslash \Sigma$ (that is, for $|z| \neq 1$), and takes continuous boundary values $\dot{\mathrm{P}}_{ \pm}(z)$ on Σ.
Jump Condition: The boundary values are related by

$$
\dot{\mathbf{P}}_{+}\left(e^{i \theta}\right)=\dot{\mathbf{P}}_{-}\left(e^{i \theta}\right)\left[\begin{array}{cc}
0 & e^{-V(\theta)} \\
-e^{V(\theta)} & 0
\end{array}\right] .
$$

Normalization: The matrix $\dot{\mathbf{P}}(z)$ satisfies $\lim _{z \rightarrow \infty} \dot{\mathbf{P}}(z)=\mathbb{I}$.

Analytic Weights: Steepest Descent Asymptotics

This problem has a unique explicit solution in terms of the Szegő function $S(z)$:

$$
\dot{\mathbf{P}}(z):=\left\{\begin{array}{cl}
{\left[\begin{array}{cc}
S(z) & 0 \\
0 & S(z)^{-1}
\end{array}\right],} & |z|>1 \\
{\left[\begin{array}{cc}
0 & S(z) \\
-S(z)^{-1} & 0
\end{array}\right],} & |z|<1
\end{array}\right.
$$

Analytic Weights: Steepest Descent Asymptotics

This problem has a unique explicit solution in terms of the Szegő function $S(z)$:

$$
\dot{\mathbf{P}}(z):=\left\{\begin{array}{cl}
{\left[\begin{array}{cc}
S(z) & 0 \\
0 & S(z)^{-1}
\end{array}\right],} & |z|>1 \\
{\left[\begin{array}{cc}
0 & S(z) \\
-S(z)^{-1} & 0
\end{array}\right],} & |z|<1
\end{array}\right.
$$

It remains to control the errors. Compare $\mathbf{P}(z)$ with $\dot{\mathbf{P}}(z)$. Define the discrepancy: $\mathbf{H}^{n}(z):=\mathbf{P}(z) \dot{\mathbf{P}}(z)^{-1}$. This matrix is analytic except on $\Sigma_{ \pm}$.

Analytic Weights: Steepest Descent Asymptotics

The discrepancy matrix $\mathbf{H}^{n}(z)$ satisfies a "small-norm" Riemann-Hilbert problem for n large: seek $\mathbf{H}^{n}(z), 2 \times 2$, with the following properties:

Analyticity: $\mathbf{H}^{n}(z)$ is analytic for $z \in \mathbb{C} \backslash\left(\Sigma_{+} \cup \Sigma_{-}\right)$, and takes continuous boundary values $\mathbf{H}_{ \pm}^{n}(z)$ on these contours.

Analytic Weights: Steepest Descent Asymptotics

The discrepancy matrix $\mathbf{H}^{n}(z)$ satisfies a "small-norm" Riemann-Hilbert problem for n large: seek $\mathbf{H}^{n}(z), 2 \times 2$, with the following properties:

Analyticity: $\mathbf{H}^{n}(z)$ is analytic for $z \in \mathbb{C} \backslash\left(\Sigma_{+} \cup \Sigma_{-}\right)$, and takes continuous boundary values $\mathbf{H}_{ \pm}^{n}(z)$ on these contours.
Jump Condition: The boundary values are related by

$$
\mathbf{H}_{+}^{n}(z)=\mathbf{H}_{-}^{n}(z)(\mathbb{I}+\text { exponentially small for } n \text { large }), \quad z \in \Sigma_{ \pm} .
$$

Analytic Weights: Steepest Descent Asymptotics

The discrepancy matrix $\mathbf{H}^{n}(z)$ satisfies a "small-norm" Riemann-Hilbert problem for n large: seek $\mathbf{H}^{n}(z), 2 \times 2$, with the following properties:

Analyticity: $\mathbf{H}^{n}(z)$ is analytic for $z \in \mathbb{C} \backslash\left(\Sigma_{+} \cup \Sigma_{-}\right)$, and takes continuous boundary values $\mathbf{H}_{ \pm}^{n}(z)$ on these contours.
Jump Condition: The boundary values are related by

$$
\mathbf{H}_{+}^{n}(z)=\mathbf{H}_{-}^{n}(z)(\mathbb{I}+\text { exponentially small for } n \text { large }), \quad z \in \Sigma_{ \pm} .
$$

Normalization: The matrix $\mathbf{H}^{n}(z)$ satisfies $\lim _{z \rightarrow \infty} \mathbf{H}^{n}(z)=\mathbb{I}$.

Analytic Weights: Steepest Descent Asymptotics

The discrepancy matrix $\mathbf{H}^{n}(z)$ satisfies a "small-norm" Riemann-Hilbert problem for n large: seek $\mathbf{H}^{n}(z), 2 \times 2$, with the following properties:

Analyticity: $\mathbf{H}^{n}(z)$ is analytic for $z \in \mathbb{C} \backslash\left(\Sigma_{+} \cup \Sigma_{-}\right)$, and takes continuous boundary values $\mathbf{H}_{ \pm}^{n}(z)$ on these contours.
Jump Condition: The boundary values are related by

$$
\mathbf{H}_{+}^{n}(z)=\mathbf{H}_{-}^{n}(z)(\mathbb{I}+\text { exponentially small for } n \text { large }), \quad z \in \Sigma_{ \pm} .
$$

Normalization: The matrix $\mathbf{H}^{n}(z)$ satisfies $\lim _{z \rightarrow \infty} \mathbf{H}^{n}(z)=\mathbb{I}$.

Riemann-Hilbert problems are equivalent to systems of singular integral equations (Cauchy kernels) on the system of jump contours. The integral equations for small-norm problems can be solved by Neumann series. This yields: $\mathbf{H}^{n}(z) \approx \mathbb{I}$, with error terms given by an asymptotic series.

Nonanalytic Weights: $\bar{\partial}$ Steepest Descent Method
If V is not analytic, however smooth, this technique fails. We need an alternative to analytic continuation for extending a smooth function from the unit circle.

Nonanalytic Weights: $\bar{\partial}$ Steepest Descent Method

If V is not analytic, however smooth, this technique fails. We need an alternative to analytic continuation for extending a smooth function from the unit circle.

Let $x=r \cos \theta$ and $y=r \sin \theta$ where $z=x+i y$. Here is a formula for an "almost analytic extension" of $V(\theta)$:

$$
E_{m} V(r, \theta):=\sum_{p=0}^{m-1} \frac{V^{(p)}(\theta)}{p!}(-i \log (r))^{p}
$$

Note that Σ is characterized by $r=1$, or equivalently $\log (r)=0$. Therefore $E_{m} V(1, \theta)=V(\theta)$ so we have indeed defined an extension of V from the unit circle.

Nonanalytic Weights: $\bar{\partial}$ Steepest Descent Method
What about "near analyticity"? Analytic functions f are characterized by the Cauchy-Riemann equations $\bar{\partial} f=0$ where

$$
\bar{\partial}:=\frac{\partial}{\partial \bar{z}}=\frac{1}{2}\left(\frac{\partial}{\partial x}+i \frac{\partial}{\partial y}\right)=\frac{e^{i \theta}}{2}\left(\frac{\partial}{\partial r}+\frac{i}{r} \frac{\partial}{\partial \theta}\right) .
$$

Nonanalytic Weights: $\bar{\partial}$ Steepest Descent Method

What about "near analyticity"? Analytic functions f are characterized by the Cauchy-Riemann equations $\bar{\partial} f=0$ where

$$
\bar{\partial}:=\frac{\partial}{\partial \bar{z}}=\frac{1}{2}\left(\frac{\partial}{\partial x}+i \frac{\partial}{\partial y}\right)=\frac{e^{i \theta}}{2}\left(\frac{\partial}{\partial r}+\frac{i}{r} \frac{\partial}{\partial \theta}\right) .
$$

Applying $\bar{\partial}$ to $E_{m} V(r, \theta)$:

$$
\bar{\partial} E_{m} V(r, \theta)=\frac{i e^{i \theta}}{2 r(m-1)!} V^{(m)}(\theta)(-i \log (r))^{m-1} \quad \text { (sum telescopes). }
$$

This is not zero, but it vanishes to order $m-1$ as $r \rightarrow 1$.

Nonanalytic Weights: $\bar{\partial}$ Steepest Descent Method

What about "near analyticity"? Analytic functions f are characterized by the Cauchy-Riemann equations $\bar{\partial} f=0$ where

$$
\bar{\partial}:=\frac{\partial}{\partial \bar{z}}=\frac{1}{2}\left(\frac{\partial}{\partial x}+i \frac{\partial}{\partial y}\right)=\frac{e^{i \theta}}{2}\left(\frac{\partial}{\partial r}+\frac{i}{r} \frac{\partial}{\partial \theta}\right) .
$$

Applying $\bar{\partial}$ to $E_{m} V(r, \theta)$:

$$
\bar{\partial} E_{m} V(r, \theta)=\frac{i e^{i \theta}}{2 r(m-1)!} V^{(m)}(\theta)(-i \log (r))^{m-1} \quad \text { (sum telescopes). }
$$

This is not zero, but it vanishes to order $m-1$ as $r \rightarrow 1$.
(If V is analytic, then the infinite series $E_{\infty} V(r, \theta)$ converges uniformly for r in a neighborhood of $r=1$ and $\bar{\partial} E_{\infty} V(r, \theta)=0$; in other words, $E_{\infty} V(r, \theta)$ is a series representation of the analytic continuation of V.)

Nonanalytic Weights: $\bar{\partial}$ Steepest Descent Method
We use an extension $E_{m} V$ of V to make use of the factorization of the jump matrix for $\mathbf{N}^{n}(z)$:

$$
\mathbf{P}_{m}^{n}(r, \theta):=\left\{\begin{array}{cc}
\mathbf{N}^{n}\left(r e^{i \theta}\right)\left[\begin{array}{cc}
1 & 0 \\
\left(r e^{i \theta}\right)^{-n} B(\log (r)) e^{E_{m} V(r, \theta)} & 1
\end{array}\right], & r>1 \\
\mathbf{N}^{n}\left(r e^{i \theta}\right)\left[\begin{array}{cc}
1 & 0 \\
-\left(r e^{i \theta}\right)^{n} B(\log (r)) e^{E_{m} V(r, \theta)} & 1
\end{array}\right], & r<1
\end{array}\right.
$$

Here $B(\cdot)$ is a C^{∞} "bump function":

Nonanalytic Weights: $\bar{\partial}$ Steepest Descent Method
We may expect that $\mathbf{P}_{m}^{n}(r, \theta) \approx \dot{\mathbf{P}}(z)$ in some sense. To analyze, define the discrepancy by $\mathbf{H}_{m}^{n}(r, \theta):=\mathbf{P}_{m}^{n}(r, \theta) \dot{\mathbf{P}}\left(r e^{i \theta}\right)^{-1}$.

Nonanalytic Weights: $\bar{\partial}$ Steepest Descent Method
We may expect that $\mathbf{P}_{m}^{n}(r, \theta) \approx \dot{\mathbf{P}}(z)$ in some sense. To analyze, define the discrepancy by $\mathbf{H}_{m}^{n}(r, \theta):=\mathbf{P}_{m}^{n}(r, \theta) \dot{\mathbf{P}}\left(r e^{i \theta}\right)^{-1}$.

The discrepancy $\mathbf{H}_{m}^{n}(r, \theta)$ satisfies another kind of problem, a $\bar{\partial}$ problem: seek $\mathbf{H}_{m}^{n}(r, \theta), 2 \times 2$, with the following properties:

Smoothness: $\mathbf{H}_{m}^{n}(r, \theta)$ is a Lipschitz continuous function on the whole polar plane.

Nonanalytic Weights: $\bar{\partial}$ Steepest Descent Method
We may expect that $\mathbf{P}_{m}^{n}(r, \theta) \approx \dot{\mathbf{P}}(z)$ in some sense. To analyze, define the discrepancy by $\mathbf{H}_{m}^{n}(r, \theta):=\mathbf{P}_{m}^{n}(r, \theta) \dot{\mathbf{P}}\left(r e^{i \theta}\right)^{-1}$.

The discrepancy $\mathbf{H}_{m}^{n}(r, \theta)$ satisfies another kind of problem, a $\bar{\partial}$ problem: seek $\mathbf{H}_{m}^{n}(r, \theta), 2 \times 2$, with the following properties:

Smoothness: $\mathbf{H}_{m}^{n}(r, \theta)$ is a Lipschitz continuous function on the whole polar plane. Deviation From Analyticity: We have

$$
\bar{\partial} \mathbf{H}_{m}^{n}(r, \theta)=\mathbf{H}_{m}^{n}(r, \theta) \mathbf{W}_{m}^{n}(r, \theta)
$$

where $\mathbf{W}_{m}^{n}(r, \theta)$ is known.

Nonanalytic Weights: $\bar{\partial}$ Steepest Descent Method
We may expect that $\mathbf{P}_{m}^{n}(r, \theta) \approx \dot{\mathbf{P}}(z)$ in some sense. To analyze, define the discrepancy by $\mathbf{H}_{m}^{n}(r, \theta):=\mathbf{P}_{m}^{n}(r, \theta) \dot{\mathbf{P}}\left(r e^{i \theta}\right)^{-1}$.

The discrepancy $\mathbf{H}_{m}^{n}(r, \theta)$ satisfies another kind of problem, a $\bar{\partial}$ problem: seek $\mathbf{H}_{m}^{n}(r, \theta), 2 \times 2$, with the following properties:

Smoothness: $\mathbf{H}_{m}^{n}(r, \theta)$ is a Lipschitz continuous function on the whole polar plane. Deviation From Analyticity: We have

$$
\bar{\partial} \mathbf{H}_{m}^{n}(r, \theta)=\mathbf{H}_{m}^{n}(r, \theta) \mathbf{W}_{m}^{n}(r, \theta)
$$

where $\mathbf{W}_{m}^{n}(r, \theta)$ is known.
Normalization: $\lim _{r \rightarrow \infty} \mathbf{H}_{m}^{n}(r, \theta)=\mathbb{I}$.

Nonanalytic Weights: $\bar{\partial}$ Steepest Descent Method

The matrix $\mathbf{W}_{m}^{n}(r, \theta)$ is nonzero only in the annulus $|\log (r)|<2$.

Nonanalytic Weights: $\bar{\partial}$ Steepest Descent Method

The matrix $\mathbf{W}_{m}^{n}(r, \theta)$ is nonzero only in the annulus $|\log (r)|<2$. Moreover, it is small when n is large:

Nonanalytic Weights: $\bar{\partial}$ Steepest Descent Method

The matrix $\mathbf{W}_{m}^{n}(r, \theta)$ is nonzero only in the annulus $|\log (r)|<2$. Moreover, it is small when n is large:

Nonanalytic Weights: $\bar{\partial}$ Steepest Descent Method

The matrix $\mathbf{W}_{m}^{n}(r, \theta)$ is nonzero only in the annulus $|\log (r)|<2$. Moreover, it is small when n is large:

This makes the $\bar{\partial}$ problem for $\mathbf{H}_{m}^{n}(r, \theta)$ a kind of small-norm problem that can be analyzed with great precision, more easily than small-norm Riemann-Hilbert problems due to local integrability of the Cauchy kernel on the plane.

Nongaussian Unitary Ensemble With Convex Exponential Weights

 In a similar way as for the circular ensembles, the measure on $N \times N$ Hermitian matrices$$
d p(\mathbf{M})=\frac{1}{Z_{N}} e^{-N \operatorname{tr}(V(\mathbf{M}))} d \mathbf{M}, d \mathbf{M}=\text { Lebesgue measure on independent entries }
$$

leads to the joint law for the real eigenvalues $x_{1} \leq \cdots \leq x_{N}$:

$$
d p\left(x_{1}, \ldots, x_{N}\right)=\frac{1}{Z_{N}^{\prime}} \cdot \prod_{m<n}\left(x_{n}-x_{m}\right)^{2} \cdot \prod_{n=1}^{N} e^{-N V\left(x_{n}\right)} d x_{n}
$$

The correlation functions have determinantal form $R_{N}^{(n)}\left(x_{1}, \ldots, x_{n}\right)=\operatorname{det}\left(K_{N}\left(x_{j}, x_{k}\right)\right)_{j, k=1, \ldots, n}$ with kernel

$$
K_{N}(x, y):=\sum_{n=0}^{N-1} p_{n}(x) p_{n}(y) e^{-N V(x) / 2} e^{-N V(y) / 2}
$$

and $p_{n}(x)$ is the orthonormal polynomial of degree n for the measure $e^{-N V(x)} d x$ on \mathbb{R}.

Orthogonal Polynomials on the Real Line: Nonanalytic Weights

By the Christoffel-Darboux formula, asymptotic analysis of correlation functions boils down, as for circular ensembles, to that of the orthonormal polynomials $p_{n}(x)$.

Orthogonal Polynomials on the Real Line: Nonanalytic Weights

By the Christoffel-Darboux formula, asymptotic analysis of correlation functions boils down, as for circular ensembles, to that of the orthonormal polynomials $p_{n}(x)$.

There is a Riemann-Hilbert problem encoding $p_{n}(x)$ due to Fokas-Its-Kitaev. A new feature of the analysis that is essential to the case of eigenvalues in \mathbb{R} (noncompact) versus in S^{1} (compact) is the contribution of finite endpoints of support of the limiting distribution of eigenvalues (semicircle law in the Gaussian case).

Orthogonal Polynomials on the Real Line: Nonanalytic Weights

By the Christoffel-Darboux formula, asymptotic analysis of correlation functions boils down, as for circular ensembles, to that of the orthonormal polynomials $p_{n}(x)$.

There is a Riemann-Hilbert problem encoding $p_{n}(x)$ due to Fokas-Its-Kitaev. A new feature of the analysis that is essential to the case of eigenvalues in \mathbb{R} (noncompact) versus in S^{1} (compact) is the contribution of finite endpoints of support of the limiting distribution of eigenvalues (semicircle law in the Gaussian case).

In work in progress with K. McLaughlin, we are extending the $\bar{\partial}$ method to handle support endpoints. Our aim is to establish universality of key limiting kernels (sine kernel in the bulk, Airy kernel at the edge leading to the Tracy-Widom law for the fluctuations of the extreme eigenvalues) describing local eigenvalue statistics, beyond the analytic class of weights V.

MATHEMATICS
 University of Michigan

Normal Matrix Models

The normal matrix models give rise to a $\bar{\partial}$ problem directly, rather than by way of modifications to a Riemann-Hilbert problem.

Normal Matrix Models

The normal matrix models give rise to a $\bar{\partial}$ problem directly, rather than by way of modifications to a Riemann-Hilbert problem.

Consider the set \mathcal{N}_{N} of $N \times N$ complex matrices \mathbf{M} that are normal: $\left[\mathbf{M}, \mathbf{M}^{\dagger}\right]=0$. Let $\mathbf{X}:=\frac{1}{2}\left(\mathbf{M}+\mathbf{M}^{\dagger}\right)$ and $\mathbf{Y}:=\frac{1}{2 i}\left(\mathbf{M}-\mathbf{M}^{\dagger}\right)$ be the Hermitian "real" and "imaginary" parts of \mathbf{M}, and let $V(x, y)$ be a real function on \mathbb{R}^{2} with sufficient growth at infinity. Equip \mathcal{N}_{N} with the probability distribution

$$
d p(\mathbf{M})=\frac{1}{Z_{N}} e^{-N \operatorname{tr}(V(\mathbf{X}, \mathbf{Y}))} d \mu(\mathbf{M})
$$

where μ is the measure on \mathcal{N}_{N} induced by the flat metric on all $N \times N$ complex matrices.

Normal Matrix Models

Diagonalization of \mathbf{M} and integrating out the eigenvectors yields the joint law for the (generally complex) eigenvalues $z_{n}=x_{n}+i y_{n}$ in the form

$$
d p\left(x_{1}, y_{1}, \ldots, x_{N}, y_{N}\right)=\frac{1}{Z_{N}^{\prime}} \prod_{j<k}\left|z_{j}-z_{k}\right|^{2} \cdot \prod_{n=1}^{N} e^{-N V\left(x_{n}, y_{n}\right)} d x_{n} d y_{n}
$$

Normal Matrix Models

Diagonalization of \mathbf{M} and integrating out the eigenvectors yields the joint law for the (generally complex) eigenvalues $z_{n}=x_{n}+i y_{n}$ in the form

$$
d p\left(x_{1}, y_{1}, \ldots, x_{N}, y_{N}\right)=\frac{1}{Z_{N}^{\prime}} \prod_{j<k}\left|z_{j}-z_{k}\right|^{2} \cdot \prod_{n=1}^{N} e^{-N V\left(x_{n}, y_{n}\right)} d x_{n} d y_{n}
$$

The correlation functions have determinantal form
$R_{N}^{(n)}\left(x_{1}, y_{1}, \ldots, x_{n}, y_{n}\right)=\operatorname{det}\left(K_{N}\left(z_{j}, z_{k}\right)\right)_{j, k=1, \ldots, n}$ with kernel

$$
K_{N}(z, w):=\sum_{n=0}^{N-1} p_{n}(z) \overline{p_{n}(w)} e^{-N V(\Re(z), \Im(z)) / 2} e^{-N V(\Re(w), \Im(w)) / 2}
$$

Here $p_{n}(z)$ is the orthonormal polynomial of degree n for the weight $e^{-N V(x, y)} d x d y$.

Normal Matrix Models

Diagonalization of \mathbf{M} and integrating out the eigenvectors yields the joint law for the (generally complex) eigenvalues $z_{n}=x_{n}+i y_{n}$ in the form

$$
d p\left(x_{1}, y_{1}, \ldots, x_{N}, y_{N}\right)=\frac{1}{Z_{N}^{\prime}} \prod_{j<k}\left|z_{j}-z_{k}\right|^{2} \cdot \prod_{n=1}^{N} e^{-N V\left(x_{n}, y_{n}\right)} d x_{n} d y_{n}
$$

The correlation functions have determinantal form
$R_{N}^{(n)}\left(x_{1}, y_{1}, \ldots, x_{n}, y_{n}\right)=\operatorname{det}\left(K_{N}\left(z_{j}, z_{k}\right)\right)_{j, k=1, \ldots, n}$ with kernel

$$
K_{N}(z, w):=\sum_{n=0}^{N-1} p_{n}(z) \overline{p_{n}(w)} e^{-N V(\Re(z), \Im(z)) / 2} e^{-N V(\Re(w), \Im(w)) / 2}
$$

Here $p_{n}(z)$ is the orthonormal polynomial of degree n for the weight $e^{-N V(x, y)} d x d y$. There is, unfortunately, no Christoffel-Darboux formula to telescope the sum in $K_{N}(z, w)$. Nonetheless, information about the asymptotic behavior of eigenvalue statistics lies in the large degree behavior of these orthogonal polynomials.

Twisted $\bar{\partial}$ Problem

The orthogonal polynomials with respect to $e^{-N V(x, y)} d x d y$ are characterized directly by a slightly modified $\bar{\partial}$ problem. Let n and N be positive integers, with $n \leq N$, and seek $\mathbf{M}^{n}(x, y)$, a 2×2 matrix-valued function on \mathbb{R}^{2} with the following properties:

Twisted $\bar{\partial}$ Problem

The orthogonal polynomials with respect to $e^{-N V(x, y)} d x d y$ are characterized directly by a slightly modified $\bar{\partial}$ problem. Let n and N be positive integers, with $n \leq N$, and seek $\mathbf{M}^{n}(x, y)$, a 2×2 matrix-valued function on \mathbb{R}^{2} with the following properties:

Smoothness: $\mathbf{M}^{n}(x, y)$ is a Lipschitz continuous function on \mathbb{R}^{2}.

Twisted $\bar{\partial}$ Problem

The orthogonal polynomials with respect to $e^{-N V(x, y)} d x d y$ are characterized directly by a slightly modified $\bar{\partial}$ problem. Let n and N be positive integers, with $n \leq N$, and seek $\mathbf{M}^{n}(x, y)$, a 2×2 matrix-valued function on \mathbb{R}^{2} with the following properties:

Smoothness: $\mathbf{M}^{n}(x, y)$ is a Lipschitz continuous function on \mathbb{R}^{2}.
Deviation from Analyticity: We have

$$
\bar{\partial} \mathbf{M}^{n}(x, y)=\overline{\mathbf{M}^{n}(x, y)}\left[\begin{array}{cc}
0 & e^{-N V(x, y)} \\
0 & 0
\end{array}\right], \quad(x, y) \in \mathbb{R}^{2}
$$

Twisted $\bar{\partial}$ Problem

The orthogonal polynomials with respect to $e^{-N V(x, y)} d x d y$ are characterized directly by a slightly modified $\bar{\partial}$ problem. Let n and N be positive integers, with $n \leq N$, and seek $\mathbf{M}^{n}(x, y)$, a 2×2 matrix-valued function on \mathbb{R}^{2} with the following properties:

Smoothness: $\mathbf{M}^{n}(x, y)$ is a Lipschitz continuous function on \mathbb{R}^{2}.
Deviation from Analyticity: We have

$$
\bar{\partial} \mathbf{M}^{n}(x, y)=\overline{\mathbf{M}^{n}(x, y)}\left[\begin{array}{cc}
0 & e^{-N V(x, y)} \\
0 & 0
\end{array}\right], \quad(x, y) \in \mathbb{R}^{2}
$$

Normalization: $\lim _{x, y \rightarrow \infty} \mathbf{M}^{n}(x, y)\left[\begin{array}{cc}(x+i y)^{-n} & 0 \\ 0 & (x+i y)^{n}\end{array}\right]=\mathbb{I}$.

Twisted $\bar{\partial}$ Problem

The orthogonal polynomials with respect to $e^{-N V(x, y)} d x d y$ are characterized directly by a slightly modified $\bar{\partial}$ problem. Let n and N be positive integers, with $n \leq N$, and seek $\mathbf{M}^{n}(x, y)$, a 2×2 matrix-valued function on \mathbb{R}^{2} with the following properties:

Smoothness: $\mathbf{M}^{n}(x, y)$ is a Lipschitz continuous function on \mathbb{R}^{2}.
Deviation from Analyticity: We have

$$
\bar{\partial} \mathbf{M}^{n}(x, y)=\overline{\mathbf{M}^{n}(x, y)}\left[\begin{array}{cc}
0 & e^{-N V(x, y)} \\
0 & 0
\end{array}\right], \quad(x, y) \in \mathbb{R}^{2}
$$

Normalization: $\lim _{x, y \rightarrow \infty} \mathbf{M}^{n}(x, y)\left[\begin{array}{cc}(x+i y)^{-n} & 0 \\ 0 & (x+i y)^{n}\end{array}\right]=\mathbb{I}$.

Then, $M_{11}(x, y)$ is the monic orthogonal polynomial of degree n in $z=x+i y$, with respect to the measure $e^{-N V(x, y)} d x d y$.

MATHEMATICS
 University of Michiga

Twisted $\bar{\partial}$ Problem

Here are some comments about the asymptotic analysis of such a problem for $n, N \rightarrow \infty$ with $0<\epsilon \leq n / N \leq 1$:

Twisted $\bar{\partial}$ Problem

Here are some comments about the asymptotic analysis of such a problem for $n, N \rightarrow \infty$ with $0<\epsilon \leq n / N \leq 1$:

- Conjugation by an appropriate equilibrium measure is required to, in particular, establish identity asymptotics for large (x, y).

MATHEMATICS
 University of Michigan

Twisted $\bar{\partial}$ Problem

Here are some comments about the asymptotic analysis of such a problem for $n, N \rightarrow \infty$ with $0<\epsilon \leq n / N \leq 1$:

- Conjugation by an appropriate equilibrium measure is required to, in particular, establish identity asymptotics for large (x, y).
- Furthermore, the use of the equilibrium measure associated with the potential $V(x, y)$ in the plane clearly makes the contribution from points outside the support exponentially negligible.

Twisted $\bar{\partial}$ Problem

Here are some comments about the asymptotic analysis of such a problem for $n, N \rightarrow \infty$ with $0<\epsilon \leq n / N \leq 1$:

- Conjugation by an appropriate equilibrium measure is required to, in particular, establish identity asymptotics for large (x, y).
- Furthermore, the use of the equilibrium measure associated with the potential $V(x, y)$ in the plane clearly makes the contribution from points outside the support exponentially negligible.
- A small-norm problem for a matrix $\mathbf{H}^{n}(x, y)$ may be converted to a closed system of integral equations solvable by Neumann series iteration with the introduction of the conjugate matrix $\overline{\mathbf{H}^{n}(x, y)}$ as a second unknown. This is not an essential modification of the method.

MÃTHEMATICS
 University of Michigan

Twisted $\bar{\partial}$ Problem

Here are some comments about the asymptotic analysis of such a problem for $n, N \rightarrow \infty$ with $0<\epsilon \leq n / N \leq 1$:

- Conjugation by an appropriate equilibrium measure is required to, in particular, establish identity asymptotics for large (x, y).
- Furthermore, the use of the equilibrium measure associated with the potential $V(x, y)$ in the plane clearly makes the contribution from points outside the support exponentially negligible.
- A small-norm problem for a matrix $\mathbf{H}^{n}(x, y)$ may be converted to a closed system of integral equations solvable by Neumann series iteration with the introduction of the conjugate matrix $\overline{\mathbf{H}^{n}(x, y)}$ as a second unknown. This is not an essential modification of the method.
- However, a genuinely two-dimensional analogue of the three-factor factorization and subsequent deformation of Riemann-Hilbert problems is required for this problem. This is the subject of current work.

Conclusions

Some ideas to take home:

Conclusions

Some ideas to take home:

- A $\bar{\partial}$ problem is a generalization of a Riemann-Hilbert problem in which nonanalyticity is "smeared-out" over a two-dimensional region.

Conclusions

Some ideas to take home:

- A $\bar{\partial}$ problem is a generalization of a Riemann-Hilbert problem in which nonanalyticity is "smeared-out" over a two-dimensional region.
- $\bar{\partial}$ problems can arise in random matrix theory through systematic deformations of Riemann-Hilbert problems characterizing relevant systems of orthogonal polynomials (the $\bar{\partial}$ steepest descent method).

MATHEMATICS
 University of Michigan

Conclusions

Some ideas to take home:

- A $\bar{\partial}$ problem is a generalization of a Riemann-Hilbert problem in which nonanalyticity is "smeared-out" over a two-dimensional region.
- $\bar{\partial}$ problems can arise in random matrix theory through systematic deformations of Riemann-Hilbert problems characterizing relevant systems of orthogonal polynomials (the $\bar{\partial}$ steepest descent method).
- $\bar{\partial}$ problems can also arise more fundamentally in random matrix theory associated with certain ensembles of nonhermitian matrices whose eigenvalues are distributed throughout the complex plane.

MÁTHEMATICS
 University of Michigan

Conclusions

Some ideas to take home:

- A $\bar{\partial}$ problem is a generalization of a Riemann-Hilbert problem in which nonanalyticity is "smeared-out" over a two-dimensional region.
- $\bar{\partial}$ problems can arise in random matrix theory through systematic deformations of Riemann-Hilbert problems characterizing relevant systems of orthogonal polynomials (the $\bar{\partial}$ steepest descent method).
- $\bar{\partial}$ problems can also arise more fundamentally in random matrix theory associated with certain ensembles of nonhermitian matrices whose eigenvalues are distributed throughout the complex plane.

Thank You!

MÂTHEMATICS
 University of Michigan

