A O problem is a kind of generalization of a Riemann-Hilbert problem. We will describe how
some O problems arise in the context of the orthogonal polynomial approach to random matrix

theory.
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Spectral theorem: diagonalize U and integrate out the eigenvector variables (Haar
measure again). What remains is the joint law for the eigenvalues {z,, = ew”}ﬁ:l:

1 : : il
dp(@l, C. ., 9N) = Z_/ . H |619m - 619n|2 . H e—NV(Gn)den .
N

m<n n=1
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pn(ew)pm(ew)e_Nv(e) dl = 6, -

Christoffel-Darboux formula:

* 10 2 70 g
py(e”)py(e?) — pn(e”)pn(e?)
KN(97 ¢) — al = 1 — e’i(Q—gb) y

where if p(z) = co + c12 + - - - + 2", then p*(2) := Goz" + crz" L 4 - - -
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Circle Polynomials: Riemann-Hilbert Problem

Normalization: The matrix M"(z) satisfies

lim M"(z) [ZO zon} — .

Depantment of

MATHEMATICS

University of Michigan




9 Problems in Random Matrix Theory April 21, 2007

Circle Polynomials: Riemann-Hilbert Problem

Depantiment of

MATHEMATICS

University of Michigan




9 Problems in Random Matrix Theory April 21, 2007

Circle Polynomials: Riemann-Hilbert Problem

Depantiment of

MATHEMATICS

University of Michigan




9 Problems in Random Matrix Theory April 21, 2007

Circle Polynomials: Riemann-Hilbert Problem

Depantiment of

MATHEMATICS

University of Michigan




9 Problems in Random Matrix Theory April 21, 2007

Circle Polynomials: Riemann-Hilbert Problem

where e(z) is an entire function.
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where e(z) is an entire function.
4. Because M{5(z)z" — 0 as z — oo, we must have e(z) = 0 and

1 ™

2 J .

M{’Ll(e’ie)e—’imee—NV(e) d9 — 0,
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where e(z) is an entire function.
4. Because M{5(z)z" — 0 as z — oo, we must have e(z) = 0 and

1 ™

o Mﬁ(ew)e_imee_Nv(e) df =0, m=20,1,2,...,n— 1.
T J

This result identifies M7’ (2z) with 7, (z), the monic orthogonal polynomial of degree n.
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+e

Then, note the factorization:

ein@ e—V(@) - 1
0 e—me — e—inGeV(G)
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otherwise .
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N"(z), otherwise .

Then the jump condition for P"(z) is exponentially negligible for large n except:

: : =V () :
n 70 n 70 0 e 70
P.(e’) =P (e") [—ev(e) i ] s z=e €X.
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: : =V (0)
= 10 = 70 0 (&
P (e”) =P_(e”) _eV®
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It remains to control the errors. Compare P(z) with
P(z). Define the discrepancy: H"(2) := P(2)P(z) "
This matrix is analytic except on >4,
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Normalization: The matrix H"(z) satisfies lim, ... H"(2) = L.
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Analytic Weights: Steepest Descent Asymptotics

H (z) = HZ(z) (I + exponentially small for n large) , z € Xy.

Normalization: The matrix H"(z) satisfies lim, ... H"(2) = L.

Riemann-Hilbert problems are equivalent to systems of singular integral equations (Cauchy kernels) on the
system of jump contours. The integral equations for small-norm problems can be solved by Neumann series.

This yields: H"(z) ~ I, with error terms given by an asymptotic series.
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Nonanalytic Weights: 0 Steepest Descent Method
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Note that X is characterized by » = 1, or equivalently log(r) = 0. Therefore
E.,V(1,0) = V(60) so we have indeed defined an extension of V' from the unit circle.
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0E,,V(r,0) = V™ (0)(—ilog(r))™ " (sum telescopes).

2r(m — 1)!

This is not zero, but it vanishes to order m — 1 as r — 1.
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- 10

OE,.V(r,0) = 27“(7:3— 1)'V(m)(9)(—z’ log(r))™ " (sum telescopes).

This is not zero, but it vanishes to order m — 1 as r — 1.

(If V' is analytic, then the infinite series EoV (7, §) converges uniformly for r in a
neighborhood of r = 1 and OE,,V (r, 0) = 0; in other words, E,V (r, 0) is a series
representation of the analytic continuation of V.)
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Here B(-) is a C'°° “bump function”:
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Deviation From Analyticity: We have
OH” (r,0) = H (r, )W (r, 0)

where W (7, 6) is known.
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Deviation From Analyticity: We have
OH” (r,0) = H (r, )W (r, 0)

where W (7, 6) is known.

Normalization: lim, .. H (r,0) = L.
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W7 (r,0) small from near analyticity of E,,V (r,0)
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W7 (r,0) small from near analyticity of E,,V (r,0)

This makes the O problem for H” (r, 6) a kind of small-norm problem that can be
analyzed with great precision, more easily than small-norm Riemann-Hilbert problems due
to local integrability of the Cauchy kernel on the plane.
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Nongaussian Unitary Ensemble With Convex Exponential Weights

The correlation functions have determinantal form
RE\?)(xla ooy ) = det(Kn(zj, Tk))j k=1,...n With kernel

N—-1
KN(:U, y) - Z pn(x)pn(y)e—NV(w)/ze—NV(y)/Q :

n=0
and py(z) is the orthonormal polynomial of degree n for the measure e VV(®) dz on R.
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distribution of eigenvalues (semicircle law in the Gaussian case).
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versus in S° (compact) is the contribution of finite endpoints of support of the limiting
distribution of eigenvalues (semicircle law in the Gaussian case).

In work in progress with K. McLaughlin, we are extending the & method to handle
support endpoints. Our aim is to establish universality of key limiting kernels (sine kernel
in the bulk, Airy kernel at the edge leading to the Tracy-Widom law for the fluctuations of
the extreme eigenvalues) describing local eigenvalue statistics, beyond the analytic class

of weights V.
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Normal Matrix Models

1
dp(M) = ——e MY gy ()
ZN
where v is the measure on Ny induced by the flat metric on all N X N complex
matrices.
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N-—-1
Kn(z,w) := pn(z)pn(w)e—NV(%(z),%(z))/2e—NV(éR(w),%(w))/z :

n=0

Here p,,(2z) is the orthonormal polynomial of degree n for the weight e NV@Y) dx dy.
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Normal Matrix Models

R]\? (T1, Y1y - Ty Yn) = det(KN(Zj, Zk))j,k=1,,,,,n with kernel
N-—1
Kn(z,w) := Zpn(Z)pn(’w)e_NV(%(Z)ag(z))/Qe—NV(%(w),%(w))ﬂ.
n=0

Here p,,(2z) is the orthonormal polynomial of degree n for the weight e NV@Y) dx dy.
There is, unfortunately, no Christoffel-Darboux formula to telescope the sum in
Kn(z,w). Nonetheless, information about the asymptotic behavior of eigenvalue
statistics lies in the large degree behavior of these orthogonal polynomials.
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OM"(z,y) = Mn(z, y)

[(:c—l—iy)_" 0 } o

Normalization: lim M"(z,y) 0 (@ + iy)"

T, Yy—00
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T, Yy—00

Normalization: lim M"(z, y) [(w +iy) 0 } =1.

0 (x 4+ iy)"

Then, M11(x,y) is the monic orthogonal polynomial of degree n in z = = + iy, with
respect to the measure e VYV (@Y) dz dy.
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negligible.
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negligible.

e A small-norm problem for a matrix H" (x, y) may be converted to a closed system of
integral equations solvable by Neumann series iteration with the introduction of the
conjugate matrix H™(x, y) as a second unknown. This is not an essential modification

of the method.
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in the plane clearly makes the contribution from points outside the support exponentially
negligible.

e A small-norm problem for a matrix H" (x, y) may be converted to a closed system of
integral equations solvable by Neumann series iteration with the introduction of the
conjugate matrix H”(x, y) as a second unknown. This is not an essential modification
of the method.

e However, a genuinely two-dimensional analogue of the three-factor factorization and
subsequent deformation of Riemann-Hilbert problems is required for this problem. This
is the subject of current work.

Depantonct of

MATHEMATICS

University of Michigan




9 Problems in Random Matrix Theory April 21, 2007

Conclusions

Depantment of

MATHEMATICS

University of Michigan W




9 Problems in Random Matrix Theory April 21, 2007

Conclusions

Depantment of

MATHEMATICS

University of Michigan W




9 Problems in Random Matrix Theory April 21, 2007

Conclusions

Depantonct of

MATHEMATICS

University of Michigan




9 Problems in Random Matrix Theory April 21, 2007

Conclusions

(the O steepest descent method).

e O problems can also arise more fundamentally in random matrix theory associated
with certain ensembles of nonhermitian matrices whose eigenvalues are distributed
throughout the complex plane.
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