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1 Unitary Ensembles

1.1 Law on matrix entries.

Consider the set of N ×N Hermitian matrices M (M = M† = conjugate transpose of M) equipped with a
probability measure

dP (M) :=
1
ZN

e−NTr(V (M))dM , (1)

where ZN is a normalization constant (partition function) and dM denotes Lebesgue measure on the alge-
braically independent real components of M: <{Mij} and ={Mij} for i > j and Mii ∈ R. Some notes:

1. V (x) is a potential increasing sufficiently rapidly for large |x| to make the measure normalizable. V (M)
is defined through the spectral theorem: for each Hermitian matrix M there exists a unitary matrix
U such that M = Udiag(x1, . . . , xN )U†, where x1 ≤ x2 ≤ · · · ≤ xN are the (real) eigenvalues of M.
Then V (M) is the matrix

V (M) := Udiag(V (x1), . . . , V (xN ))U† . (2)

As the trace is invariant under conjugation, note that

Tr(V (M)) = Tr(diag(V (x1), . . . , V (xN ))) =
N∑
k=1

V (xk) . (3)

2. Measures of this form are unitarily invariant, in the sense that if U is a fixed N × N unitary matrix
then the map M 7→ UM′U† preserves the form:

dP (M′) =
1
ZN

e−NTr(V (M′))dM′ . (4)

This is important in quantum physics, where M represents an observable (a self-adjoint operator)
written in terms of some basis. The unitary invariance means that the basis chosen to write M should
not be important in any physically meaningful statistical theory of observables.

3. An important special case corresponds to the choice V (x) = x2. This is the Gaussian Unitary Ensemble
(GUE). Only in this case are the entries of M statistically independent random variables.

∗Notes corrected May 15, 2008
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1.2 Joint law for eigenvalues. Determinantal form.

Recall the idea of writing the measure dP (M) not in terms of the matrix entries but rather in terms of the
eigenvalues and eigenvectors of M. The Jacobian of this transformation is proportional to the square of the
determinant of the Vandermonde matrix of eigenvalues. Thus, if M = Udiag(x1, . . . , xN )U†, then

dP (M) =
1
ZN

df(U) ·
N∏
k=1

e−NV (xk)dxk ·
∏
j<k

(xk − xj)2 , (5)

for some measure df on the unitary group of eigenvector matrices. Thus, the eigenvalues and eigenvectors
are statistically independent. The marginal distribution of eigenvalues comes from integrating out the
eigenvectors:

dP (x1, . . . , xN ) =
1
Z ′N

N∏
k=1

e−NV (xk)dxk ·
∏
j<k

(xk − xj)2 = P (x1, . . . , xN )
N∏
k=1

dxk . (6)

This law has determinantal form. Indeed, since

∏
j<k

(xk − xj) = det


1 1 1 · · · 1
x1 x2 x3 · · · xN
x2

1 x2
2 x2

3 · · · x2
N

...
...

...
...

...
xN−1

1 xN−1
2 xN−1

3 · · · xN−1
N

 = det


1 x1 x2

1 · · · xN−1
1

1 x2 x2
2 · · · xN−1

2

1 x3 x2
3 · · · xN−1

3
...

...
...

...
...

1 xN x2
N · · · xN−1

N

 , (7)

it is clear from simple properties of determinants that we can express P in the form

P (x1, . . . , xN ) =
1
Z ′N

det



e−NV (x1)/2 x1e

−NV (x1)/2 · · · xN−1
1 e−NV (x1)/2

e−NV (x2)/2 x2e
−NV (x2)/2 · · · xN−1

2 e−NV (x2)/2

...
...

...
...

e−NV (xN )/2 xNe
−NV (xN )/2 · · · xN−1

N e−NV (xN )/2



·


e−NV (x1)/2 e−NV (x2)/2 · · · e−NV (xN )/2

x1e
−NV (x1)/2 x2e

−NV (x2)/2 · · · xNe
−NV (xN )/2

...
...

...
...

xN−1
1 e−NV (x1)/2 xN−1

2 e−NV (x2)/2 · · · xN−1
N e−NV (xN )/2


 . (8)

For that matter, we could also note that the determinant is unchanged by the operation of adding to any
one row (column) multiples of the other rows (columns), so this formula can also be written as

P (x1, . . . , xN ) =
1
Z ′′N

det



q0(x1)e−NV (x1)/2 q1(x1)e−NV (x1)/2 · · · qN−1(x1)e−NV (x1)/2

q0(x2)e−NV (x2)/2 q1(x2)e−NV (x2)/2 · · · qN−1(x2)e−NV (x2)/2

...
...

...
...

q0(xN )e−NV (xN )/2 q1(xN )e−NV (xN )/2 · · · qN−1(xN )e−NV (xN )/2



·


q0(x1)e−NV (x1)/2 q0(x2)e−NV (x2)/2 · · · q0(xN )e−NV (xN )/2

q1(x1)e−NV (x1)/2 q1(x2)e−NV (x2)/2 · · · q1(xN )e−NV (xN )/2

...
...

...
...

qN−1(x1)e−NV (x1)/2 qN−1(x2)e−NV (x2)/2 · · · qN−1(xN )e−NV (xN )/2


 . (9)

where qk(x) = qk,kx
k + · · · is an arbitrary polynomial of exact degree k (qk,k 6= 0 for all k = 0, 1, 2, . . . ), and

Z ′′N = Z ′N

N−1∏
k=0

q2
k,k . (10)
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Carrying out the matrix multiplication we get

P (x1, . . . , xN ) =
1
Z ′′N

det


KN (x1, x1) KN (x1, x2) KN (x1, x3) · · · KN (x1, xN )
KN (x2, x1) KN (x2, x2) KN (x2, x3) · · · KN (x2, xN )
KN (x3, x1) KN (x3, x2) KN (x3, x3) · · · KN (x3, xN )

...
...

...
...

...
KN (xN , x1) KN (xN , x2) KN (xN , x3) · · · KN (xN , xN )

 (11)

where

KN (x, y) := e−NV (x)/2e−NV (y)/2
N−1∑
k=0

qk(x)qk(y) . (12)

So P (x1, . . . , xN ) is just a determinant involving polynomials qk(x) and a weight w(x) := e−NV (x).
But the arbitrariness of the polynomials qk(x) should be an advantage, and a special choice may simplify
calculations. Indeed, if we pick for qk(x) the orthonormal polynomials with respect to the weight w(x) =
e−NV (x), i.e. the polynomials qk(x) = pk(x) = pk,kx

k + · · · with pk,k > 0 such that∫ +∞

−∞
pj(x)pk(x)e−NV (x) dx = δjk , j, k = 0, 1, . . . , (13)

then the function KN (x, y) is a reproducing kernel :

p(x)e−NV (x)/2 =
∫ +∞

−∞
KN (x, y)

[
p(y)e−NV (y)/2

]
dy (14)

holds for all polynomials p(x) of degree N − 1 (or less). Since KN (x, y) has the form of p(x)e−NV (x)/2 for
each y, we can put p(y)e−NV (y)/2 = KN (y, z) to get

KN (x, z) =
∫ +∞

−∞
KN (x, y)KN (y, z) dy . (15)

Some notes:

1. The orthogonality conditions uniquely determine the polynomials pk(x) as long as V (x) grows fast
enough as |x| → ∞. A procedure for determining them is Gram-Schmidt orthogonalization.

2. Other notation: the monic orthogonal polynomials are denoted πk(x) and are simply given by

πk(x) :=
1
pk,k

pk(x) = xk + · · · . (16)

3. The orthonormality conditions are equivalent to the conditions that∫ +∞

−∞
πk(x)xje−NV (x) dx = 0 , 0 ≤ j ≤ k − 1 (17)

and ∫ +∞

−∞
πk(x)xke−NV (x) dx =

1
p2
k,k

. (18)

From now on we assume that the polynomials used to present the joint law P (x1, . . . , xN ) in determinantal
form are not arbitrary but are rather the orthogonal polynomials qk(x) = pk(x) associated with the weight
w(x) = e−NV (x). The identity (15) is then at our disposal and will have implications in simplifying formulae
for correlation functions as we will now see.
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1.3 Correlation functions. Definition and determinantal point processes.

The n-point correlation function is a kind of marginal distribution on a group of n ≤ N eigenvalues, and is
defined by the formula

R
(n)
N (x1, . . . , xn) :=

N !
(N − n)!

∫
R(xn+1)

· · ·
∫

R(xN )

P (x1, . . . , xN ) dxn+1 · · · dxN . (19)

The one-point function has the interpretation of N times the density of eigenvalues, in the sense that for
any measurable set I ⊂ R, ∫

I

R
(1)
N (x) dx = E(number of eigenvalues in I) . (20)

More generally, the n-point function R(n)
N (x1, . . . , xn) is the probability density for finding an eigenvalue near

each of the points x1, . . . , xn.
By definition, the correlation functions are multiple integrals, and for n fixed the number of dimensions

over which to integrate is N − n which grows with N . But, it is a consequence of the identity (15) that the
correlation functions can be written alternately in a form that avoids all integration. For this we need the
following “integrating out” lemma:

Proposition 1. Let Jn be an n × n matrix with entries of the form Jij = f(xi, xj) for some measureable
function f : R2 → C with the property that∫

f(x, y)f(y, z) dµ(y) = f(x, z) (21)

holds for some measure dµ on R. Then,∫
det(Jn) dµ(xn) =

[∫
f(x, x) dµ(x)− n+ 1

]
det(Jn−1) . (22)

Note that the matrix Jn−1 has the same functional form as Jn but with one fewer row and column (omitting
the variable xn, which has been integrated out).

For a proof, see Deift [1] or Mehta [2]. To apply this result with f(x, y) = KN (x, y), which satisfies the
hypotheses of the proposition according to (15), first we calculate∫ +∞

−∞
KN (x, x) dx =

N−1∑
k=0

∫ +∞

−∞
pk(x)2e−NV (x) dx = N , (23)

and then we proceed by repeated integration, since

R
(n−1)
N (x1, . . . , xn−1) =

1
N − n+ 1

∫ +∞

−∞
R

(n)
N (x1, . . . , xn) dxn , (24)

and
R

(N)
N (x1, . . . , xN ) = N !P (x1, . . . , xN ) =

N !
Z ′′N

det(JN ) (25)

where JN is the N×N matrix with entries Jij = KN (xi, xj). Since the factor (N−n+1) that the proposition
says to include with each integration is exactly the factor in the denominator of (24), by the proposition we
have

R
(n)
N (x1, . . . , xn) =

N !
Z ′′N

det(Jn) =
N !
Z ′′N

det


KN (x1, x1) KN (x1, x2) · · · KN (x1, xn)
KN (x2, x1) KN (x2, x2) · · · KN (x2, xn)

...
...

...
...

KN (xn, x1) KN (xn, x2) · · · KN (xn, xn)

 . (26)
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In particular, this shows that the scaled density of eigenvalues (the one-point function) is given by

R
(1)
N (x) =

N !
Z ′′N

KN (x, x) , (27)

and since

N = E(number of eigenvalues in R) =
∫ +∞

−∞
R

(1)
N (x) dx =

N !
Z ′′N

∫ +∞

−∞
KN (x, x) dx =

N !
Z ′′N

N , (28)

we have shown that the partition function Z ′′n = N !. Therefore, our formula for the correlation functions
simplifies yet again:

R
(n)
N (x1, . . . , xn) = det


KN (x1, x1) KN (x1, x2) · · · KN (x1, xn)
KN (x2, x1) KN (x2, x2) · · · KN (x2, xn)

...
...

...
...

KN (xn, x1) KN (xn, x2) · · · KN (xn, xn)

 . (29)

Therefore all multipoint correlation functions for the random variables (eigenvalues) x1, . . . , xN have the form
of simple determinants, and no integration is required to evaluate them once KN (x, y) is known. Correlation
functions of this form are said to correspond to a determinantal point process.

Some notes:

1. Since Z ′′N = N !, with the use of (10), the “original” partition function of the joint law for eigenvalues
is

Z ′N = N !
N−1∏
k=0

p−2
k,k , (30)

where pk,k > 0 is the leading coefficient of the orthonormal polynomial pk(x).

2. More precise statistics can also be represented in terms of KN (x, y). For example, the probability that
given measurable set I contains exactly k eigenvalues can be computed from the correlation functions
by an inclusion/exclusion principle. The result is that such probabilities are expressed in terms of
Fredholm determinants of operators on L2(I) of the form I − tKN where KN is the integral operator
on I with kernel KN (x, y), and t is a “generating function” parameter. See Deift [1] or Mehta [2].

2 Asymptotic Behavior of Correlation Functions

We are interested in the way the statistics (correlation functions) behave as the matrices become larger and
larger. Clearly this boils down to the study of the kernel KN (x, y) in the limit N →∞.

2.1 Christoffel-Darboux formula.

By its definition, the reproducing kernel KN (x, y) contains “more and more” information the larger N is,
since it has the form of a partial sum of an infinite series. A fantastically useful result of the general theory
of orthogonal polynomials (see Szegő [3]), is that, in a certain sense, the partial sum telescopes.

Proposition 2 (Christoffel-Darboux formula). Let pk(x) be the orthonormal polynomials with respect to
any weight w(x) dx on R. Then, for any n ≥ 0, and real x and y with x 6= y,

n−1∑
k=0

pk(x)pk(y) =
pn−1,n−1

pn,n
· pn(x)pn−1(y)− pn−1(x)pn(y)

x− y
. (31)
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Moreover, the same formula holds for x = y by interpreting the right-hand side with l’Hôpital’s rule:

n−1∑
k=0

pk(x)2 =
pn−1,n−1

pn,n

[
p′n(x)pn−1(x)− p′n−1(x)pn(x)

]
. (32)

Using this result, we can write the reproducing kernel KN (x, y) as

KN (x, y) = e−NV (x)/2e−NV (y)/2 · pN−1,N−1

pN,N
· pN (x)pN−1(y)− pN−1(x)pN (y)

x− y
, x 6= y , (33)

or
KN (x, x) = e−NV (x) pN−1,N−1

pN,N

[
p′N (x)pN−1(x)− p′N−1(x)pN (x)

]
. (34)

Therefore, to study the large-N behavior of KN (x, y) it is enough to study the behavior of two polynomials.

2.2 Example: the Gaussian unitary ensemble.

2.2.1 Hermite polynomials.

Here we do all of this with V (x) = x2. The orthogonal polynomials in this case are the classical Hermite
polynomials. One can lift all the results needed directly from Szegő’s book [3], but to do so one needs the
translation of the orthonormal polynomials with respect to e−Nx

2
which we call pk(x) into Szegő’s notation.

Szegő considers polynomials Hk(x) with positive leading coefficient that satisfy∫ ∞
−∞

Hj(x)Hk(x)e−x
2
dx =

√
π2kk!δjk , (35)

and all of his results are written for Hk(x). By a simple scaling argument,

pk(x) =
(
N

π

)1/4 1√
2kk!

Hk(
√
Nx) . (36)

The leading coefficient of Hk(x) is 2k, from which it follows that

pk,k =
(
N

π

)1/4
√

(2N)k

k!
. (37)

The Hermite polynomials have many, many special properties that make them easy to analyze by classical
techniques. For example, (see §5.5 of [3]) pk(x) satisfies a second-order differential equation:

1
N

d2pk
dx2

− 2x
dpk
dx

+ 2kpk = 0 . (38)

The WKB method can be applied to study this differential equation when N and k are large. There is also
a simple and explicit generating function for pk(x):

p0(x) + p1(x)w +
1√
2!
p2(x)w2 +

1√
3!
p3(x)w3 + · · · =

(
N

π

)1/4

e(2N)1/2xw−w2/2 . (39)

More than being a formal power series relation, the left-hand side of this expression is a uniformly convergent
series in any compact set of C2. Multiply through by w−k−1/(2πi) and integrate on a circle in the complex
w-plane surrounding w = 0. By the Residue Theorem, only one term on the left-hand side survives:

1√
k!
pk(x) =

(
N

π

)1/4 1
2πi

∮
w−k−1e(2N)1/2xw−w2/2 dw . (40)

6



A complete analysis of KN (x, y) can be based upon this formula for k = N and k = N − 1. Rescaling the
integration variable by setting w = (2N)1/2z and defining the analytic exponent function

h(z;x) := − log(z) + 2xz − z2 , (41)

we thus find

pN−1(x) =
(
N

π

)1/4
√

(N − 1)!
(2N)N−1

1
2πi

∮
eNh(z;x) dz , (42)

and

pN (x) =
(
N

π

)1/4
√

N !
(2N)N

1
2πi

∮
1
z
eNh(z;x) dz . (43)

These formulae may be differentiated with respect to x under the integral sign, resulting in integral repre-
sentations for the derivatives as well:

p′N−1(x) =
(
N

π

)1/4
√

(N − 1)!
(2N)N−1

N

πi

∮
zeNh(z;x) dz , (44)

and

p′N (x) =
(
N

π

)1/4
√

N !
(2N)N

N

πi

∮
eNh(z;x) dz . (45)

Therefore,

KN (x, x) =
e−Nx

2
(N − 1)!

2N+1π5/2NN−5/2

[∮
zeNh(z;x) dz

∮
1
z′
eNh(z′;x) dz′ −

(∮
eNh(z;x) dz

)2
]
. (46)

and

KN (x, y) =
e−Nx

2/2e−Ny
2/2(N − 1)!

2N+2π5/2NN−3/2(x− y)

[∮
1
z
eNh(z;y) dz

∮
eNh(z′;x) dz′ −

∮
1
z
eNh(z;x) dz

∮
eNh(z′;y) dz′

]
.

(47)
The way to analyze these formulae in the limit N →∞ is to use the method of steepest descent. This kind

of calculation was first carried out for the Hermite polynomials by Plancherel and Rotach. More generally,
one refers to the asymptotics of pk(x) orthogonal with respect to a weight e−NV (x) in the limit k,N → ∞
with k/N → c and x fixed as Plancherel-Rotach asymptotics.

2.2.2 Stirling’s formula.

Stirling’s formula tells us how (N − 1)! behaves as N → +∞:

(N − 1)! =
√

2πe−NNN−1/2(1 +O(N−1)) . (48)

Using this formula in our expressions for KN (x, x) and KN (x, y) gives

KN (x, x) = e−N(x2+1+log(2)) N2

π2
√

2

[∮
zeNh(z;x) dz

∮
1
z′
eNh(z′;x) dz′ −

(∮
eNh(z;x) dz

)2
]

(1 +O(N−1)) ,

(49)
and

KN (x, y) = e−N(x2/2+y2/2+1+log(2)) N

2π2
√

2(x− y)

·
[∮

1
z
eNh(z;y) dz

∮
eNh(z′;x) dz′ −

∮
1
z
eNh(z;x) dz

∮
eNh(z′;y) dz′

]
(1 +O(N−1)) . (50)
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2.2.3 Steepest descent analysis.

For an introduction in general context, see, e.g. [4]. The key result we need is the following.

Proposition 3. Consider a contour integral of the form

I :=
∫
C

g(z)eNh(z) dz (51)

where g(z) and h(z) are analytic functions and C is a smooth contour in the complex plane along which
={h(z)} = ={h(z0)} for some point z0 ∈ C which also corresponds to a local maximum for <{h(z)} along
C. (This implies that z0 is a critical point of h(z), that is, h′(z0) = 0.) Then as long as h′′(z0) 6= 0,

I = eiθ

√
2π

N |h′′(z0)|
g(z0)eNh(z0)(1 +O(N−1)) , (52)

as N → +∞, where θ = − arg(h′′(z0))/2± π/2 is the angle with which C traverses the point z0.

The exponent function h(z;x) has two critical points in the complex plane:

z =
x

2
± 1

2

√
x2 − 2 , (53)

and therefore we have two real critical points if |x| >
√

2 and a complex-conjugate pair of critical points if
|x| <

√
2. We consider x > 0 (x < 0 is similar).

Outside the bulk: x >
√

2. Both critical points are real and positive. We have

h′′((x+
√
x2 − 2)/2;x) < 0 , h′′((x−

√
x2 − 2)/2;x) > 0 , (54)

Figure 1 shows pictures of the complex z-plane illustrating the curves where ={h(z;x)} is constant passing
through the two critical points. Based on these figures, we see that the right thing to do is to deform the

-2 -1 0 1 2
-2

-1

0

1

2

-2 -1 0 1 2
-2

-1

0

1

2

-2 -1 0 1 2
-2

-1

0

1

2

Figure 1: The complex z-plane for x = 1.45, x = 1.5, and x = 2 (left to right). The lighter parts of the plot
correspond to larger <{h(z;x)}, and the red curves are the levels of ={h(z;x)} passing through the two real
critical points.

path of integration to a constant ={h(z;x)} curve passing vertically over the leftmost critical point. It is
an exercise to show that the one-point function R

(1)
N (x) = KN (x, x) is exponentially small as N → +∞

whenever x is fixed outside the bulk.
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Figure 2: The complex z-plane for x = 1, x = 1.3, and x = 1.4 (left to right). The lighter parts of the plot
correspond to larger <{h(z;x)}, and the red curves are the levels of ={h(z;x)} passing through the two real
critical points.

Inside the bulk: 0 < x <
√

2. In this case the critical points form a complex conjugate pair, and figures
showing the contours of ={h(z;x)} passing through these two points are presented in Figure 2. These figures
show that we should deform the circular path into two disjoint components, one in the upper and one in the
lower half-plane, each passing from valley to valley over a saddle point. Thus the integral will asymptotically
feel two contributions (of equal magnitude as <{h(z;x)} is the same at the two critical points). That is, we
write ∮

zpeNh(z;x) dz =
∫
C

zpeNh(z;x) dz −
∫
C∗
zpeNh(z;x) = 2i=

{∫
C

zpeNh(z;x) dz

}
(55)

where C is the contour of constant ={h(z;x)} passing from −∞ to +∞ over the critical point

z−(x) :=
1
2

(
x− i

√
2− x2

)
(56)

in the lower half-plane as shown in Figure 2. Note that

h′′(z−(x);x) = −2(2− x2) + 2ix
√

2− x2 =
√

8(2− x2)eiα(x) (57)

for some angle α(x) in the second quadrant (for x > 0). The angle θ(x) with which the contour C passes
over the critical point z−(x) is then

θ(x) := −1
2
α(x) +

π

2
, (58)

which lies in the first quadrant. Also, define a phase angle φ(x) by writing

h(z−(x);x) = <{h(z−(x);x)}+ iφ(x)

= − log |z−(x)|+ 2x<{z−(x)} − <{z−(x)2}+ iφ(x)

=
1
2

(x2 + 1 + log(2)) + iφ(x) ,

(59)

and finally, note that
1

z−(x)
= 2z−(x)∗ = x+ i

√
2− x2 . (60)
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Applying Proposition 3, we then find that∮
1
z
eNh(z;x) dz = 2i=

{
eiθ(x)

√
2π

N
√

8(2− x2)
· (x+ i

√
2− x2) · eN(x2+1+log(2))/2eiNφ(x)(1 +O(N−1))

}

= 2i

√
2π

N
√

8(2− x2)
eN(x2+1+log(2))/2

·
[
x sin(Nφ(x) + θ(x)) +

√
2− x2 cos(Nφ(x) + θ(x)) +O(N−1)

]
,

(61)∮
zeNh(z;x) dz = 2i=

{
eiθ(x)

√
2π

N
√

8(2− x2)
·
(
x

2
− i

2

√
2− x2

)
· eN(x2+1+log(2))/2eiNφ(x)(1 +O(N−1))

}

= i

√
2π

N
√

8(2− x2)
eN(x2+1+log(2))/2

·
[
x sin(Nφ(x) + θ(x))−

√
2− x2 cos(Nφ(x) + θ(x)) +O(N−1)

]
,

(62)

and ∮
eNh(z;x) dz = 2i=

{
eiθ(x)

√
2π

N
√

8(2− x2)
· eN(x2+1+log(2))/2eiNφ(x)(1 +O(N−1))

}

= 2i

√
2π

N
√

8(2− x2)
eN(x2+1+log(2))/2

[
sin(Nφ(x) + θ(x)) +O(N−1)

]
.

(63)

Therefore,∮
1
z
eNh(z;x) dz

∮
z′eNh(z′;x) dz′ −

(∮
eNh(z;x) dz

)2

=
π

N

√
2

2− x2
eN(x2+1+log(2))

[
2− x2 +O(N−1)

]
,

(64)
and so we see that if x is a fixed point in the bulk |x| <

√
2, then

R
(1)
N (x) = KN (x, x) =

N

π

√
2− x2 +O(1) , (65)

as N → +∞. This completes (yet another, for this course) proof of the Wigner semicircle law.
What about multipoint correlations in the bulk? The asymptotic mean spacing between eigenvalues near

a point x in the bulk is (from R
(1)
N (x))

1
N

∆(x) :=
1
N

lim
N→∞

N

R
(1)
N (x)

=
π

N
√

2− x2
, (66)

so to zoom in on a neighborhood of x, consider the expression

K loc
N (ξ, η) :=

KN (x+N−1∆(x)ξ, x+N−1∆(x)η)
KN (x, x)

=
KN (x+N−1∆(x)ξ, x+N−1∆(x)η)

N∆(x)−1 +O(1)
, (67)

a “localized” and “renormalized” version of the kernel KN (x, y). Supposing that x ∈ (−
√

2,+
√

2) is fixed
and ν is confined to an arbitrary bounded subset of R, we may replace x by x + N−1∆(x)ν in (61)–(63),
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which remain valid under these conditions. Simplifying (61)–(63) under this substitution with the help of
the fact that (direct calculation)

φ′(x) =
d

dx
={h(z−(x);x)} = −

√
2− x2 (68)

so that φ′(x)∆(x) ≡ −π, we obtain

∮
1
z
eNh(z;x+N−1∆(x)ν) dz = 2i

√
2π

N
√

8(2− x2)
eN(x2+1+log(2))/2ex∆(x)ν

·
[
x sin(Nφ(x) + θ(x)− πν) +

√
2− x2 cos(Nφ(x) + θ(x)− πν) +O(N−1)

]
, (69)

and∮
eNh(z;x+N−1∆(x)ν) dz = 2i

√
2π

N
√

8(2− x2)
eN(x2+1+log(2))/2ex∆(x)ν

·
[
sin(Nφ(x) + θ(x)− πν) +O(N−1)

]
. (70)

Therefore, if x is replaced by x + N−1∆(x)ξ and y is replaced by x + N−1∆(x)η, with ξ and η both in a
bounded subset of R, then∮

1
z
eNh(z;x+N−1∆(x)η) dz

∮
eNh(z′;x+N−1∆(x)ξ) dz′ −

∮
1
z
eNh(z;x+N−1∆(x)ξ) dz

∮
eNh(z′;x+N−1∆(x)η) dz′

=
2
√

2π
N

eN(x2+1+log(2))ex∆(x)(ξ+η)

[
sin(π(ξ − η)) +O

(
ξ − η
N

)]
. (71)

It follows that
K loc
N (ξ, η) = S(ξ, η) +O(N−1) , (72)

where the sine kernel is defined by

S(ξ, η) :=
sin(π(ξ − η))
π(ξ − η)

. (73)

From the determinantal formula for R(n)
N (x1, . . . , xn) it then follows easily that

R
(n)
N (x+N−1∆(x)ξ1, . . . , x+N−1∆(x)ξn)

= KN (x, x)n det


K loc
N (ξ1, ξ1) K loc

N (ξ1, ξ2) · · · K loc
N (ξ1, ξn)

K loc
N (ξ2, ξ1) K loc

N (ξ2, ξ2) · · · K loc
N (ξ2, ξn)

...
...

...
...

K loc
N (ξn, ξ1) K loc

N (ξn, ξ2) · · · K loc
N (ξn, ξn)



=
(
N

π

√
2− x2

)n
det


S(ξ1, ξ1) S(ξ1, ξ2) · · · S(ξ1, ξn)
S(ξ2, ξ1) S(ξ2, ξ2) · · · S(ξ2, ξn)

...
...

...
...

S(ξn, ξ1) S(ξn, ξ2) · · · S(ξn, ξn)

+O(Nn−1) .

(74)

In this way, all multipoint correlation functions for n eigenvalues near a point x in the bulk are expressed in
terms of the sine kernel as N → +∞ in the Gaussian unitary ensemble.
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At the edge: x ≈ ±
√

2. In this situation there are two critical points coalescing. Near the coalescing
critical points, h(z;x) may be approximated by a cubic polynomial in z, and integrals with exponents of the
form zx− z3/3 are Airy functions of x. These arguments can be made rigorous, showing that KN (x, y) can
be represented in terms of the Airy function Ai(x) when x and y are near the edge of the spectrum. An
appropriate Fredholm determinant involving the (appropriately rescaled and renormalized) limiting kernel,
called the Airy kernel

A(ξ, η) :=
Ai(ξ)Ai′(η)−Ai(η)Ai′(ξ)

ξ − η
, (75)

gives the Tracy-Widom law for the largest eigenvalue of a random matrix from the Gaussian unitary ensemble.

2.3 Asymptotics of correlation functions for more general V (x).

In the more general case, all of the specialized methods we used to analyze pN (x) and pN−1(x) in the Hermite
case are unavailable. It is not known whether orthogonal polynomials for a general weight of the form e−NV (x)

posess any simple contour integral representations, or whether they satisfy any simple differential equations.
These must be regarded as very special features of the Hermite weight e−Nx

2
(and a few other so-called

“classical” weights, see Szegő). On the other hand, it is now known that many features of the Gaussian case
are universal. The asymptotics of the one-point function are not universal (that is, for general V (x) one does
not have a semicircle law anymore) but nonetheless the correlations of eigenvalues in the bulk and at the
edge follow, respectively, the sine kernel and the Airy kernel. We now move on to study the more general
and quite recent techniques that allow one to prove universality results for eigenvalues in non-Gaussian but
unitarily invariant Hermitian random matrix ensembles.

3 Riemann-Hilbert Problems for Orthogonal Polynomials

The breakthrough came from a paper of Fokas, Its, and Kitaev [5], which contained a way of characterizing
orthogonal polynomials by means of a matrix-valued Riemann-Hilbert problem of analytic function theory.
To prepare for understanding the Riemann-Hilbert problem for orthogonal polynomials (and Riemann-
Hilbert problems more generally) we need to review some basics of analytic functions.

3.1 Analytic functions and Cauchy integrals.

3.1.1 Cauchy-Riemann equations and the Theorems of Liouville and Cauchy.

An analytic function f(z) = u(x, y) + iv(x, y), z = x+ iy, satisfies the Cauchy-Riemann equations:

∂u

∂x
=
∂v

∂y
and

∂u

∂y
= −∂v

∂x
. (76)

We will use this fact later in the following context. Suppose f(z) is known to be an analytic function
that is real-valued on the real axis of the complex z-plane (v(x, 0) ≡ 0). If f(z) is increasing along the
real axis (ux(x, 0) > 0) then by the Cauchy-Riemann equations we have vy(x, 0) > 0 also, which says that
v(x, y) = ={f(z)} is positive just above the real axis and negative just below the real axis. The reverse is
true if f(z) is decreasing.

A function f(z) that is analytic for z in the whole complex plane is called entire.

Proposition 4 (Liouville’s Theorem). An entire function f(z) that is bounded in the limit z → ∞ (from
all directions) is a constant function f(z) ≡ f0.

It follows from this theorem that if f(z) is an entire function that decays to zero as z →∞ then f(z) ≡ 0,
and that if f(z) is an entire function satisfying f(z) = O(zk) as z → ∞ for some k = 0, 1, 2, . . . , then f(z)
is a polynomial of degree (at most) k.

Finally, recall the following fundamental result, which we already used implicitly in applying the steepest
descent method of contour integration.
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Proposition 5 (Cauchy’s Theorem). Suppose C is a simple closed curve, and that f(z) is a function analytic
within C and continuous up to C. Then ∫

C

f(z) dz = 0 . (77)

3.1.2 Cauchy integrals.

The reference for this material is Muskhelishvili [6].

Cauchy transform. Given a contour Σ in the complex plane, the contour integral

(CΣf)(z) :=
1

2πi

∫
Σ

f(w) dw
w − z

, z ∈ C \ Σ (78)

is called the Cauchy transform of f relative to Σ, or in more general context, a Cauchy integral. The function
f(w), w ∈ Σ is the density of the Cauchy integral. CΣf is an analytic function of z in its domain of definition.
If Σ is bounded, or if Σ is unbounded but f(w) decays to zero at a sufficiently rapid rate as w ∈ Σ tends to
infinity, then (CΣf)(z) = O(z−1) as z →∞.

Boundary values. Plemelj formula. While the Cauchy transform of f is only defined for values of z
not on the contour Σ, it frequently happens that the integral has well-defined limiting values as z approaches
a point z0 ∈ Σ from either side. As Σ is oriented, it has a left and right side at each point z0 ∈ Σ, and we
define

(CΣ
+f)(z0) := lim

z→z0
z on left side of Σ

(CΣf)(z) and (CΣ
−f)(z0) := lim

z→z0
z on right side of Σ

(CΣf)(z) (79)

wherever these (nontangential to Σ) limits make sense. The left and right boundary values are not usually
equal even if they both exist. They are, however, related.

Proposition 6 (Plemelj formula). Suppose that f(w) is a Hölder continuous function on Σ in a neighborhood
U of a point z0 ∈ Σ at which Σ is smooth and orientable. Then the boundary values (CΣ

±f)(z) both exist and
are also Hölder continuous (with the same exponent) in Σ ∩ U and satisfy

(CΣ
+f)(z0)− (CΣ

−f)(z0) = f(z0) . (80)

If f(w) is not necessarily Hölder continuous, but is in L2(Σ), then it turns out that the boundary values
(CΣ
±f)(z) exist pointwise for almost all z ∈ Σ and may be identified with functions in L2(Σ).

The operator viewpoint. As starting with a function on Σ, calculating the Cauchy transform CΣf and
then taking limits from the complex plane to Σ again results in functions on Σ, one should view CΣ

± as
(obviously linear) operators acting on some space of functions on the contour Σ. A crucial fact is that on the
Hölder spaces with exponent strictly less than one the Cauchy operators CΣ

± are bounded operators: there is
a constant KHν(Σ) > 0, 0 < ν < 1, such that

‖CΣ
±f‖Hν(Σ) ≤ KHν(Σ)‖f‖Hν(Σ) (81)

holds for all f defined on Σ for which the Hölder norm

‖f‖Hν(Σ) := sup
w∈Σ
|f(w)|+ sup

z,w∈Σ

|f(z)− f(w)|
|z − w|ν

(82)

is finite (such f make up the space Hν(Σ)). This result is attributed to Plemelj and Privalov. There is a
corresponding result for the space L2(Σ) attributed to many people, some quite recent, including Coifman,
McIntosh, and Meyer [7] in the case of Lipschitz curves Σ. There is a constant KL2(Σ) > 0 such that

‖CΣ
±f‖L2(Σ) ≤ KL2(Σ)‖f‖L2(Σ) (83)
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holds for all f ∈ L2(Σ), that is, functions Σ→ C for which

‖f‖L2(Σ) :=
(∫

Σ

|f(z)|2 |dz|
)1/2

(84)

is finite.

3.2 The Riemann-Hilbert problem and its “solution”.

Now we are ready to formulate the Riemann-Hilbert problem related to orthogonal polynomials.

Riemann-Hilbert Problem 1. Let n ≥ 0 be an integer. Find a 2×2 matrix-valued function An(z), z ∈ C,
with the following properties:

Analyticity. An(z) is analytic for z ∈ C\R, and takes continuous boundary values An
±(x) as z tends

to x ∈ R from z ∈ C±.

Jump Condition. The boundary values are connected by the relation

An
+(x) = An

−(x)
[
1 e−NV (x)

0 1

]
, x ∈ R . (85)

Normalization. The matrix An(z) is normalized at z =∞ as follows:

lim
z→∞

An(z)z−nσ3 = I , (86)

where the limit may be taken in any direction.

(Some notation: σ3 is a Pauli matrix given by

σ3 :=
[
1 0
0 −1

]
and z−nσ3 :=

[
z−n 0

0 zn

]
(87)

and I denotes the 2× 2 identity matrix.)

Proposition 7. Suppose that V (x) is a continuous function of x ∈ R that grows sufficiently rapidly as
|x| → ∞ (polynomial is enough), and that n ≥ 0. Then Riemann-Hilbert Problem 1 has a unique solution,
namely

An(z) =
[

πn(z) (CRπn(·)e−NV (·))(z)
−2πip2

n−1,n−1πn−1(z) −2πip2
n−1,n−1(CRπn−1(·)e−NV (·))(z)

]
, z ∈ C \ R (88)

for n > 0, and

A0(z) =
[
1 (CRe−NV (·))(z)
0 1

]
, z ∈ C \ R . (89)

(Recall that πn(z) = pn(z)/pn,n = zn + · · · is the nth monic orthogonal polynomial with respect to the weight
e−NV (x).)

Proof. Assume n > 0 (the proof for n = 0 is analogous and simpler but not a special case of general n ≥ 0).
The first column of the jump relation (85) reads

An11+(x) = An11−(x) and An21+(x) = An21−(x) , x ∈ R . (90)

So, An11(z) and An21(z) are analytic functions in C \ R taking continuous boundary values on the real axis
from the upper and lower half planes, and these boundary values agree. Thus An11(z) and An21(z) extend
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continuously to R and (these extensions) constitute continuous functions in the whole complex plane. It
follows that analyticity also extends to R, making the components of the first column of An(z) entire
functions of z.

Now we consider what the normalization condition (86) says about the entire functions An11(z) and An21(z).
The first column of (86) implies that

An11(z) = zn(1 + o(1)) and An21(z) = o(zn) (91)

as z → ∞. By Liouville’s Theorem, An11(z) has to be a monic polynomial of degree n, while An21(z) has to
be a polynomial of degree (at most) n− 1.

Now we look at the second column of the jump condition (85), which implies

An12+(x)−An12−(x) = An11(x)e−NV (x) and An22+(x)−An22−(x) = An21(x)e−NV (x) , x ∈ R . (92)

Although the polynomials An11(z) and An21(z) are not yet known, let’s view these as equations to be solved for
An12(z) and An22(z) in terms of An11(z) and An21(z). The Plemelj formula tells us how to solve these equations.
Indeed, the general solution is given by

Anj2(z) = (CRAnj1(·)e−NV (·))(z) + ej(z) (93)

for j = 1, 2, where ej(z) are entire functions of z. (Check the jump condition!)
Finally, we consider the second column of the normalization condition (86), which reads

An12(z) = o(z−n) and An22(z) = z−n + o(z−n) (94)

as z → ∞. In particular, these conditions require that Anj2(z) tends to zero as z → ∞ (because n > 0).
Since the Cauchy integral component of Anj2(z) already decays to zero for large z we therefore require that
ej(z) → 0 as z → ∞. By Liouville’s Theorem it then follows that the entire functions ej(z) are identically
zero. It remains to enforce the precise rate of decay o(z−n) on the Cauchy integrals. To do this, we obtain
asymptotic expansions of Anj2(z) by expanding the Cauchy kernel under the integral sign:

1
w − z

= −z−1 − wz−2 − w2z−3 − · · · , (95)

from which it follows that Anj2(z) has the asymptotic expansion

Anj2(z) ∼ − 1
2πiz

∫
R
Anj1(x)e−NV (x) dx− 1

2πiz2

∫
R
Anj1(x)xe−NV (x) dx− 1

2πiz3

∫
R
Anj1(x)x2e−NV (x) dx− · · ·

(96)
as z →∞. To obtain the required decay it is therefore necessary that∫

R
An11(x)xke−NV (x) dx = 0 , k = 0, 1, 2, . . . , n− 1 (97)

which identifies the monic polynomial An11(z) with πn(z), and that∫
R
An21(x)xke−NV (x) dx = 0 , k = 0, 1, 2, . . . , n− 2 (98)

and ∫
R
An21(x)xn−1e−NV (x) dx =

∫
R
An21(x)πn−1(x)e−NV (x) dx = −2πi , (99)

which identifies the polynomial An21(z) with −2πip2
n−1,n−1πn−1(z).
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In the section title we called this the “solution” of the Riemann-Hilbert problem using quotation marks
because while Proposition 7 provides a characterization of the components of the matrix An(z), the use of
this “solution” formula in practice requires the construction of the orthogonal polynomials for e−NV (x) by
some other means. The main idea here is to turn Proposition 7 on its head, and to use the conditions of
Riemann-Hilbert Problem 1 as an indirect method to construct the orthogonal polynomials. This approach
will be universally applicable in the limit when n and N are proportionately large, which is the case of
Plancherel-Rotach asymptotics and the case relevant to random matrix theory.

Also note: the ingredients for the reproducing kernel KN (x, y) are explicitly contained in the first column
of An(z) for n = N . Indeed,

KN (x, y) = −e
−N(V (x)+V (y))/2

2πi
· A

N
11(x)AN21(y)−AN21(x)AN11(y)

x− y
. (100)

Finally, we note the following important fact:

Proposition 8. The solution An(z) of Riemann-Hilbert Problem 1 satisfies det(An(z)) ≡ 1.

Proof. We can prove this directly from the conditions of the Riemann-Hilbert problem itself. Indeed, d(z) :=
det(An(z)) is, by the analyticity condition, an analytic function for z ∈ C\R that takes continuous boundary
values d±(x) for x ∈ R. Taking determinants in (85) gives d+(x) = d−(x), so d(z) is an entire function.
Finally, taking determinants in (86) shows that d(z)→ 1 as z →∞, so by Liouville’s Theorem d(z) ≡ 1.

4 Riemann-Hilbert Problems in General

4.1 General Riemann-Hilbert problems.

A contour Σ, possibly with self-intersection points, is called complete if it divides the complex plane into two
complementary regions, which we may call Ω±. See Figure 3. A complete contour has a natural orientation

Ω+

Ω+

Ω+

Ω+

Ω
−

Ω
−

Ω
−

Ω
−

?

Figure 3: Left: an incomplete contour. Right: a complete contour.

on each arc, so that Ω+ lies on the left. If Σ is a complete contour, then the following operator identities
hold:

CΣ
+ ◦ CΣ

− = CΣ
− ◦ CΣ

+ = 0 . (101)

The proof is by Cauchy’s Theorem, since for a complete contour Σ, (CΣ
±f)(z) is a function on Σ that is the

boundary value of a function analytic in Ω± (and decaying at z = ∞ if Ω± is unbounded). Therefore, to
calculate CΣ

− ◦ CΣ
+f , deform the integration path for CΣ

− into Ω+ and apply Cauchy’s Theorem.
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Applying (101) in the Plemelj formula shows that

CΣ
+ − CΣ

− = 1 implies CΣ
+ ◦ CΣ

+ − CΣ
+ ◦ CΣ

− = CΣ
+ implies CΣ

+ ◦ CΣ
+ = CΣ

+ , (102)

and likewise,
(−CΣ

−) ◦ (−CΣ
−) = −CΣ

− . (103)

This shows that for complete contours Σ, P± := ±CΣ
± are complementary projection operators.

Let Σ be complete and let V(z), z ∈ Σ be a 2 × 2 invertible (for each z ∈ Σ) matrix-valued function
defined on Σ that decays sufficiently rapidly to I as z → ∞ along any unbounded parts of Σ. Consider the
following Riemann-Hilbert Problem.

Riemann-Hilbert Problem 2. Find a 2× 2 matrix-valued function M(z) with the following properties.

Analyticity. M(z) is analytic for z ∈ C \ Σ and takes boundary values M±(w) in a certain function
space as z → w ∈ Σ with z ∈ Ω±.

Jump Condition. The boundary values are connected by the relation

M+(z) = M−(z)V(z) , z ∈ Σ . (104)

Normalization. The matrix M(z) is normalized at z =∞ as follows:

lim
z→∞

M(z) = I , (105)

where the limit may be taken in any direction.

Note: the condition that Σ be complete can be dispensed with, since any contour can be completed by
adding one or more arcs, and the jump matrix V(z) may be taken to be the identity matrix I on the added
arcs. See Figure 4.

Ω+

Ω−

?

Ω+

Ω−

Ω+

Ω−

V

V

V

V

V

V

V ≡ I

Figure 4: Left: a Riemann-Hilbert problem on an incomplete contour. Right: a completion thereof.

4.2 Singular integral equations.

Problems of the form of Riemann-Hilbert Problem 2 may be solved by rephrasing the problem in terms of
the solution of a system of integral equations. Suppose that V(z) is can be factored for each z ∈ Σ as

V(z) = B−(z)−1B+(z) (106)
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for some other invertible matrix functions B±(z) defined on Σ. Note: one choice that is admissable for many
applications is just B+(z) := V(z) and B−(z) ≡ I. Then set

W+(z) := B+(z)− I and W−(z) := I−B−(z) , (107)

and define a singular integral operator CΣ
W on Σ by the formula

(CΣ
WF)(z) = (CΣ

+(FW−))(z) + (CΣ
−(FW+))(z) . (108)

Proposition 9. Suppose that X(z), z ∈ Σ, is the unique solution (in a well-chosen function space) of the
singular integral equation

X(w)− (CΣ
WX)(w) = I , w ∈ Σ . (109)

Then, the matrix
M(z) := I + (CΣ(XW+))(z) + (CΣ(XW−))(z) , z ∈ C \ Σ (110)

is the unique solution (with boundary values in the same function space) of Riemann-Hilbert Problem 2.

Proof. We just give the basic idea of the proof. Clearly the solution formula (110) represents an analytic
function for z ∈ C \ Σ. The Cauchy transforms in the solution formula (110) decay as z → ∞, so the
normalization condition (105) is satisfied.

Next, we verify the jump condition (104), which in view of the factorization V(z) = B−(z)−1B+(z) can
be written in the form M+(z)B+(z)−1 = M−(z)B−(z)−1. It is this that we must show holds when M(z) is
given by (110) where X(z) solves (109). Note that for z ∈ Σ,

M+(z) = I + (CΣ
+(XW+))(z) + (CΣ

+(XW−))(z)

= I + (CΣ
+(XW+))(z) +

[
X(z)− (CΣ

−(XW+))(z)− I
]

= X(z) + (CΣ
+(XW+))(z)− (CΣ

−(XW+))(z)

(111)

by using the integral equation (109), and similarly,

M−(z) = X(z) + (CΣ
−(XW−))(z)− (CΣ

+(XW−))(z) . (112)

Now we apply the Plemelj formula to these expressions:

M+(z) = X(z) +
[
X(z)W+(z) + (CΣ

−(XW+))(z)
]
− (CΣ

−(XW+))(z)
= X(z)(I + W+(z))
= X(z)B+(z) ,

(113)

and similarly,
M−(z) = X(z)B−(z) . (114)

So, it is indeed true that M+(z)B+(z)−1 = M−(z)B−(z)−1 with the common value being X(z).

So, to solve Riemann-Hilbert Problem 2 it is enough to solve the integral equation (109). Let’s consider
this equation in the space L2(Σ). Suppose that W±(z) are uniformly bounded matrix functions on Σ. Then
CΣ
W is a bounded operator with norm

‖CΣ
W‖L2(Σ) ≤ KL2(Σ) ·

(
sup
z∈Σ
|W+(z)|+ sup

z∈Σ
|W−(z)|

)
(115)

where | · | denotes any norm on 2 × 2 matrices. If |W±(z)| ≤ ε holds for some number ε > 0 that can be
(somehow) made small, then for sufficiently small ε we will have

‖CΣ
W‖L2(Σ) ≤ 2εKL2(Σ) < 1 , for ε small enough. (116)
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In this situation, the inverse operator (1−CΣ
W)−1 exists as a bounded operator on L2(Σ), and is represented

by the convergent Neumann series

(1− CΣ
W)−1 = 1 + CΣ

W + CΣ
W ◦ CΣ

W + CΣ
W ◦ CΣ

W ◦ CΣ
W + · · · . (117)

This convergent series is also an asymptotic series in the limit ε → 0, and partial sums applied to I give
accurate approximations to the unique solution X(z) = (1 − CΣ

W)−1I of the integral equation (109) in
this limit. Note that in this asymptotic situation we conclude that the solution M(z) of Riemann-Hilbert
Problem 2 satisfies M(z)→ I as ε→ 0 for each fixed z ∈ C\Σ. We say that such a Riemann-Hilbert problem
is a near-identity problem.

4.3 Equivalence of Riemann-Hilbert problems. Deformation.

Suppose that G(z) is a given 2× 2 invertible matrix-valued function of z ∈ C that, moreover, is analytic for
z ∈ C \ ΣG where ΣG is some oriented contour. Then, if M(z) is an unknown satisfying Riemann-Hilbert
Problem 2 we may form the product

M̃(z) := M(z)G(z) , z ∈ C \ Σ̃ , (118)

where Σ̃ := Σ ∪ ΣG is an arcwise-oriented contour. It follows by direct calculation that M(z) satisfies
Riemann-Hilbert Problem 2 if and only if M̃(z) satisfies another Riemann-Hilbert Problem:

Riemann-Hilbert Problem 3. Find a 2× 2 matrix-valued function M̃(z) with the following properties:

Analyticity. M̃(z) is analytic for z ∈ C \ Σ̃ and takes boundary values M̃±(z) on Σ̃ from the left and
right sides.

Jump Condition. The boundary values of M̃(z) are related by

M̃+(z) = M̃−(z)Ṽ(z) , z ∈ Σ̃ (119)

where Ṽ(z) is a given matrix-valued function on Σ̃ (see below for a definition).

Normalization. The matrix M̃(z) is normalized at z =∞ as follows:

lim
z→∞

M̃(z)G(z)−1 = I . (120)

What is Ṽ(z)? There are three different formulae, all explicit. First suppose that z ∈ Σ̃ \ ΣG. Then
G(z) is analytic and hence continuous at z. Therefore, from (104),

M̃+(z) = M+(z)G(z) = M−(z)V(z)G(z) = M̃−(z)G(z)−1V(z)G(z) , z ∈ Σ̃ \ ΣG , (121)

so for such z we have Ṽ(z) = G(z)−1V(z)G(z). Next, suppose that z ∈ Σ̃ \Σ. Then M(z) is continuous at
z so

M̃+(z) = M(z)G+(z) = M̃−(z)G−(z)−1G+(z) , z ∈ Σ̃ \ Σ , (122)

so for such z we have Ṽ(z) = G−(z)−1G+(z). Finally, suppose that z ∈ Σ∩ΣG. Now both M(z) and G(z)
are discontinuous at z so

M̃+(z) = M+(z)G+(z) = M−(z)V(z)G+(z) = M̃−(z)G−(z)−1V(z)G+(z) , z ∈ Σ ∩ ΣG , (123)

so for such z we have Ṽ(z) = G−(z)−1V(z)G+(z).
The simplest example of this construction is in the case when the jump matrix V(z) and its inverse

V(z)−1 are both analytic functions of z ∈ C themselves in some open set U ⊂ C with U ∩ Σ 6= ∅. Then
by defining the matrix G(z) as in Figure 5, we see that in going from M(z) to M̃(z), the jump on part of
Σ has disappeared, and a new jump on ΣG has appeared, but the new jump is given by the same formula:
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G(z) = V(z)−1

G(z) = V(z)

U U

+ +

+

+

−

−

−

−

Figure 5: Left: the matrix G(z) is set equal to I except where indicated. Σ is shown in red and ΣG is shown
in blue. Right: the resulting contour Σ̃ on which the jump matrix is Ṽ(z) = V(z) (trivial parts of Σ̃ on
which Ṽ(z) ≡ I are not shown).

Ṽ(z) = V(z). This construction is the analogue for Riemann-Hilbert problems of Cauchy’s Theorem for
contour integration.

This equivalence principle for Riemann-Hilbert problems provides a way of solving a given Riemann-
Hilbert problem of the form of Riemann-Hilbert Problem 3 where the jump matrices and/or the normalization
condition involve a small parameter ε (for our application, we will have ε = 1/N). You can try to find a
known matrix G(z) that converts this Riemann-Hilbert problem into one of the form of Riemann-Hilbert
Problem 2 that you can show is a near-identity problem in the limit ε → 0. Then you can rely on integral
equation theory to provide an asymptotic expansion for M(z), and then asymptotics for the unknown of
interest, M̃(z), are obtained through the relation M̃(z) = M(z)G(z). In the literature an explicit matrix
G(z) that transforms your problem into a near-identity problem is called a parametrix. A parametrix may
also be thought of as an asymptotically valid model for M̃(z).

5 Asymptotic Analysis of Riemann-Hilbert Problems for Orthog-
onal Polynomials

We will now consider in detail the asymptotic solution of Riemann-Hilbert Problem 1 characterizing the
orthogonal polynomials with weight e−NV (x). According to (100), the situation interesting for random
matrix theory is to obtain asymptotics for An(z) in the special case of n = N , and in the limit of N → +∞.
What now follows is the modern version of the amazing calculation of Plancherel and Rotach based on
contour integrals in the special case of V (x) = x2. The modern version works for completely general V (x).

5.1 Step 1: Repairing the normalization condition.

The most glaring difference between the Riemann-Hilbert problem for AN (z) and a near-identity problem
lies in the form of the normalization condition (86), which explicitly prevents AN (z) from resembling the
identity matrix at least near z = ∞. We can imagine trying to fix this problem by cooking up a scalar
function g(z) that looks like log(z) near z =∞, because setting

BN (z) := AN (z)e−Ng(z)σ3 = AN (z)
[
e−Ng(z) 0

0 eNg(z)

]
, (124)
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we see that the normalization condition (86) implies that BN (z)→ I as z →∞.
At this point it is important that in picking g(z) we do not mess up (qualitatively speaking) the other

properties that AN (z) is supposed to have: analyticity in upper and lower half-planes and continuity of
boundary values. For example, were we to choose g(z) ≡ log(z) then eg(z) ≡ z and while analyticity in
half-planes is preserved upon going over to BN (z) by (124), continuity of the boundary values is not (a pole
of order N appears at z = 0).

One idea is that we could “smear out” the pole as follows: let ψ(x) dx be a probability measure on R
with a nice (say, compactly supported and Hölder continuous) density ψ. Now set

g(z) :=
∫ +∞

−∞
log(z − x)ψ(x) dx . (125)

Then g(z) is an analytic function for z ∈ C \ R that takes continuous boundary values on R from C±, and
moreover by expanding the integrand for large z,

g(z) = log(z)
∫ +∞

−∞
ψ(x) dx+O(z−1) = log(z) +O(z−1) (126)

as z → ∞, because ψ(x) dx is a probability measure. Thus we have “smeared out” the pole by replacing a
point mass by an absolutely continuous probability measure. (To be honest, this calculation works for any
nice function ψ(x) with integral equal to 1; the assumption that ψ(x) ≥ 0 will, however, be useful later for
a different reason.) Consequently, for such g(z),

e−Ng(z)σ3 = z−Nσ3(I +O(z−1)) , as z →∞ for fixed N (127)

which is enough to conclude from the normalization condition (86) for AN (z) that BN (z) tends to the
identity matrix as z → ∞. At the end of step 1, we have obtained an equivalent Riemann-Hilbert problem
for BN (z) according to the principles outlined earlier:

Riemann-Hilbert Problem 4. Find a 2× 2 matrix-valued function BN (z) with the following properties:

Analyticity. BN (z) is an analytic function of z for z ∈ C \ R that takes continuous boundary values
BN
± (x) on R from the upper and lower half-planes C±.

Jump Condition. The boundary values are related by

BN
+ (x) = BN

− (x)
[
e−N(g+(x)−g−(x)) e−N(V (x)−g+(x)−g−(x))

0 eN(g+(x)−g−(x))

]
, x ∈ R . (128)

Here g±(x) denote the boundary values taken by g(z) from C±.

Normalization. The matrix BN (z) is normalized at z =∞ as follows:

lim
z→∞

BN (z) = I . (129)

Note that by the relation (124) of BN (z) to AN (z), the use of Proposition 8 gives det(BN (z)) ≡ 1.

5.2 Logarithmic potential theory and equilibrium measures.

Now we are faced with a question: how should we choose the measure ψ(x) dx to our advantage in considering
the limit N → +∞? To study this problem, let’s write out what g+(x)− g−(x) and V (x)− g+(x)− g−(x)
are in terms of ψ(x). To do this, we note that for fixed y ∈ R,

[log(x− y)]± := lim
ε↓0

log(x+ iε− y) =

{
log |x− y| , for x > y

log |x− y| ± iπ for x < y ,
(130)
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so that

g±(x) =
∫ +∞

−∞
log |x− y|ψ(y) dy ± iπ

∫ +∞

x

ψ(y) dy , (131)

and therefore

g+(x)− g−(x) = iθ(x) , θ(x) := 2π
∫ +∞

x

ψ(y) dy (132)

and

V (x)− g+(x)− g−(x) = −2
∫ +∞

−∞
log |x− y|ψ(x) dx+ V (x) . (133)

5.2.1 The energy functional and its minimizer.

The right-hand side of (133) is the variational derivative or Frechét derivative of a functional of ψ(x) dx:

V (x)− g+(x)− g−(x) =
δE

δψ
(x) , (134)

where

E[ψ] :=
∫ +∞

−∞

∫ +∞

−∞
log
(

1
|x− y|

)
ψ(x) dxψ(y) dy +

∫ +∞

−∞
V (x)ψ(x) dx . (135)

Physically, E[ψ] is the Coulomb energy of a distribution ψ(x) dx of positive electric charge confined to the
real line in a two-dimensional universe (the Green’s function for Laplace’s equation in two dimensions is the
kernel in the double integral). The charges are influenced both by mutual repulsion (the first term) and
by being trapped in an externally applied electrostatic potential V (x) (the second term). The equilibrium
measure is the probability measure ψ(x) dx that minimizes E[ψ]. It exists and is unique when V (x) grows fast
enough as |x| → ∞ by virtue of general convexity arguments (the definitive statement is the Gauss-Frostman
Theorem; see Saff and Totik [8]).

The equilibrium measure is characterized by its variational conditions. There is a constant ` ∈ R, the
Lagrange multiplier used to enforce the constraint∫ +∞

−∞
ψ(x) dx = 1 , (136)

such that when ψ(x) is the density of the equilibrium measure,

δE

δψ
(x) ≡ ` , x ∈ supp(ψ) (137)

while
δE

δψ
(x) > ` , x 6∈ supp(ψ) . (138)

Physically speaking once again, it seems reasonable that if V (x) is a strictly convex function (that is,
V ′′(x) > 0 everywhere) then we have a “single-well” rather than a “multiple-well” potential, and we expect
the charges to all be lying in a single lump. This guess holds water mathematically as this result shows:

Proposition 10. Suppose that V : R → R is a strictly convex function that grows sufficiently rapidly as
|x| → ∞. Then the equilibrium measure is supported on a single interval [α, β] ⊂ R.

Proof. Suppose there were a gap in the support. Then the function f(x) defined by

f(x) :=
δE

δψ
(x)− ` (139)

has to have a graph like that shown in Figure 6. For x in the gap we may differentiate under the integral
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f(x)

x

supp(ψ), f(x) ≡ 0 presumed gap, f(x) > 0

Figure 6: The graph of f(x) near a gap in supp(ψ).

sign to find:

f ′(x) =
d

dx

δE

δψ
(x) = −2

∫
supp(ψ)

ψ(y) dy
x− y

+ V ′(x) , for x in the presumed gap (140)

and again:

f ′′(x) = 2
∫

supp(ψ)

ψ(y) dy
(x− y)2

+ V ′′(x) , for x in the presumed gap. (141)

This is strictly positive for convex V . But to have f(x) > 0 in the gap and f(x) = 0 on either side requires
f ′′(x0) < 0 for some x0 in the gap, which gives a contradiction.

From now on we assume that V (x) is convex for simplicity, although almost all of the theory goes through
in the nonconvex case too (one has to deal with the possibility of multiple components of supp(ψ)).

5.2.2 How to find the equilibrium measure.

Equations governing g′(z). We proceed somewhat indirectly, by looking for g′(z) instead of ψ(x). For
z ∈ C \ R differentiation of the “logarithmic transform” formula for g(z) in terms of ψ(x) gives

g′(z) =
∫ +∞

−∞

ψ(x) dx
z − x

= −2πi(CRψ)(z) , (142)

so g′(z) is a factor of −2πi away from the Cauchy transform of ψ. If we can find g′(z), then we will know
ψ(x), since from the Plemelj formula,

ψ(x) = − 1
2πi

(g′+(x)− g′−(x)) , x ∈ R . (143)

Differentiation of (133) and using the variational condition (137) gives

g′+(x) + g′−(x) = V ′(x) , x ∈ supp(ψ) , (144)

while on the other hand, from (143),

g′+(x)− g′−(x) = 0 , x 6∈ supp(ψ) . (145)

Moreover, from (142) we see that
g′(z) = z−1 +O(z−2) , (146)

as z →∞. We view the system (144)–(146) as equations to be solved for a function g′(z) analytic in C \R.
Once g′(z) is known from these conditions, the equilibrium measure will be given by (143).
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Solving for g′(z). The “square-root trick”. In the convex V case the support is an unknown interval
[α, β]. We can easily make the two equations (144)–(145) look more similar by the following “square-root
trick”. Consider the function R(z) defined by the following properties:

1. R(z)2 = (z − α)(z − β) for all z ∈ C.

2. R(z) is analytic for z ∈ C \ [α, β].

3. R(z) = z +O(1) as z →∞.

In terms of the principal branch of the function w1/2, we can even write a formula: R(z) = (z−α)1/2(z−β)1/2.
(Complex variables exercise: why is this not the same as ((z − α)(z − β))1/2?) It is a consequence of this
definition that

R+(x) = R−(x) , x ∈ R \ [α, β] , while R+(x) = −R−(x) , x ∈ [α, β] . (147)

Now make a change of variables by looking for h(z) = g′(z)/R(z) instead of g′(z) itself. Then h(z) is analytic
for z ∈ C \ R, and using (147) together with (144)–(145) we see that its boundary values satisfy

h+(x)− h−(x) =


V ′(x)
R+(x)

, x ∈ (α, β)

0 , x ∈ R \ [α, β] .

(148)

Next, from the asymptotic condition (146) and the fact that R(z) = z +O(1), we see that we must require
that h(z) = z−2 +O(z−3). In particular, h(z) decays to zero as z →∞, so we may solve explicitly for h(z)
by the Plemelj formula:

h(z) =
1

2πi

∫ β

α

V ′(x) dx
R+(x)(x− z)

= (C[α,β](V ′/R+))(z) . (149)

Expanding this formula for large z gives

h(z) = − 1
2πiz

∫ β

α

V ′(x) dx
R+(x)

− 1
2πiz2

∫ β

α

xV ′(x) dx
R+(x)

+O(z−3) (150)

as z →∞. Therefore the required decay at infinity requires∫ β

α

V ′(x) dx
R+(x)

= 0 and
∫ β

α

xV ′(x) dx
R+(x)

= −2πi (151)

which are equations that determine the endpoints α and β of the support interval!

Further simplification for entire V (x). This whole procedure simplifies if the convex function V is also
an entire function. Indeed, we may first rewrite (149) as

h(z) =
1

4πi

∫ β

α

V ′(x) dx
R+(x)(x− z)

+
1

4πi

∫ β

α

V ′(x) dx
R+(x)(x− z)

=
1

4πi

∫ β

α

V ′(x) dx
R+(x)(x− z)

− 1
4πi

∫ β

α

V ′(x) dx
R−(x)(x− z)

,

(152)
and then through the sequence of contour deformations shown in Figure 7, we get

h(z) =
V ′(z)
2R(z)

+
1

4πi

∮
L

V ′(w) dw
R(w)(w − z)

(153)
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Figure 7: Left to right: the steps of contour deformation for h(z) when V (x) is entire.

where L is the large contour in the right-hand diagram of Figure 7. There are no singularities of the integrand
outside of L, so the final integral may be calculated by residues at w =∞. Indeed,

h(z) =
V ′(z)
2R(z)

− 1
2

Res
w=∞

V ′(w)
R(w)(w − z)

(154)

where the indicated residue is just the coefficient of w−1 in the Taylor/Laurent series expansion about
w =∞. Here the following expansions are useful:

1
w − z

= w−1 + zw−2 + z2w−3 + · · · (155)

and
1

R(w)
= w−1 +

1
2

(α+ β)w−2 +
1
8

(3α2 + 2αβ + 3β2)w−3 + · · · . (156)

Example: V (x) = x2. This is convex and entire. We have the expansion

V ′(w)
R(w)(w − z)

= 2w ·
[

1
w

+ · · ·
]
·
[

1
w

+ · · ·
]

=
2
w

+ · · · ,
(157)

so the required residue is just 2, and therefore

h(z) =
z

R(z)
− 1 . (158)

Expanding this formula at z =∞ gives

h(z) =
1
2z

(α+ β) +
1

8z2
(3α2 + 2αβ + 3β2) +O(z−3) , (159)

so since we require that h(z) = z−2 +O(z−3), the endpoints α and β are determined from the equations

α+ β = 0 and 3α2 + 2αβ + 3β2 = 8 . (160)
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The unique solution with α ≤ β is β = −α =
√

2. With the endpoints known, we may find the equilibrium
measure ψ(x) by using (143) and

g′(z) = R(z)h(z) = z −R(z) . (161)

since z has no jump on the real line and for x ∈ [α, β] we have R±(x) = ±i
√

(x− α)(β − x) = ±i
√

2− x2,
we get

ψ(x) =
1
π

√
2− x2 , x ∈ [−

√
2,
√

2] (162)

which in view of what is to come may be viewed as yet another (for this course) proof of the Wigner semicircle
law.

Example: V (x) = x4. This is convex and entire, and it is the first concrete example we have considered
of a V (x) that is outside the class of what can be handled by classical techniques. In this case, we have the
expansion

V ′(w)
R(w)(w − z)

= 4w3 ·
[

1
w

+
z

w2
+
z2

w3
+ · · ·

]
·
[

1
w

+
1

2w2
(α+ β) +

1
8w3

(3α2 + 2αβ + 3β2) + · · ·
]

= 4w + [4z + 2α+ 2β] +
[
4z2 + 2(α+ β)z +

1
2

(3α2 + 2αβ + 3β2)
]

1
w

+ · · · ,
(163)

from which we easily peel off the required residue. Therefore,

h(z) =
2z3

R(z)
− 2z2 − (α+ β)z − 1

4
(3α2 + 2αβ + 3β2) . (164)

Expanding this formula for large z gives

h(z) =
1
8z

(5α3 + 3α2β + 3αβ2 + 5β3) +
1

64z2
(35α4 + 20α3β + 18α2β2 + 20αβ3 + 35β4) +O(z−3) (165)

so since 5α3 + 3α2β + 3αβ2 + 5β3 = (5α2 − 2αβ + 5β2)(α+ β), the equations that determine the endpoints
in this case are

(5α2 − 2αβ + 5β2)(α+ β) = 0 and 35α4 + 20α3β + 18α2β2 + 20αβ3 + 35β4 = 64 . (166)

The only real solutions of the first equation correspond to α = −β, and with this choice the second equation
becomes simply β4 = 4/3, so the support interval in this case is

[α, β] =

[
−
(

4
3

)1/4

,

(
4
3

)1/4
]
. (167)

Finally, since

g′(z) = R(z)h(z) = 2z3 −

[
2z2 +

(
4
3

)1/2
]
R(z) , (168)

we find the equilibrium measure for the case V (x) = x4 to be:

ψ(x) =
1
π

[
2x2 +

(
4
3

)1/2
]√(

4
3

)1/2

− x2 , x ∈

[
−
(

4
3

)1/4

,

(
4
3

)1/4
]
. (169)

The density ψ(x) is plotted along with the semicircle law for comparison in Figure 8. Note that unlike the
semicircle law, the equilibrium measure for V (x) = x4 is a bimodal distribution.

Final note: a similar procedure can be employed in the case of analytic but nonconvex V , but one needs
to guess at the number of intervals of support and add “consistency tests” to the problem to confirm that the
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Figure 8: Blue curve: the density ψ(x) of the equilibrium measure for V (x) = x4. Red curve: the Wigner
semicircle law (equilibrium measure for V (x) = x2).

guess was correct (the number of support intervals is known to be finite in the analytic case). For nonanalytic
but convex V the residue method does not apply but the integral formula (149) still holds “in place” on
the real axis, leading to a formula for ψ(x) as a principal-value Cauchy integral. One cannot carry out the
deformation illustrated in Figure 7 without analyticity of V (x). For nonconvex and nonanalytic V it is an
open problem to formulate conditions under which the support consists of a finite number of intervals. There
are concrete examples for which the number of support intervals is infinite (they shrink and accumulate at
one or more points).

5.2.3 Effect of the equilibrium measure on the Riemann-Hilbert problem.

From now on we assume that the probability measure used to build the function g(z) is not arbitrary, but
rather is chosen to be the equilibrium measure associated with the function V . Then, in terms of quantities
defined earlier, the jump condition for BN (z) can be written in the form

BN
+ (x) = BN

− (x)
[
e−iNθ(x) e−NδE/δψ(x)

0 eiNθ(x)

]
, x ∈ R . (170)

To see the relevance of the variational conditions (137)–(138), we need to bring in the Lagrange multiplier
`. Define a new unknown matrix CN (z) in terms of Bn(z) by the formula

CN (z) := eN`σ3/2BN (z)e−N`σ3/2 . (171)

Then CN (z) is easily seen (on the basis of the conditions on BN (z) stemming from Riemann-Hilbert Prob-
lem 4) to satisfy the following slightly-modified Riemann-Hilbert problem:

Riemann-Hilbert Problem 5. Find a 2× 2 matrix-valued function CN (z) with the following properties:

Analyticity. CN (z) is an analytic function of z for z ∈ C \ R taking continuous boundary values
CN
± (x) as z → x ∈ R from C±.

Jump Condition. The boundary values are related by

CN
+ (x) = CN

− (x)
[
e−iNθ(x) eN(`−δE/δψ(x))

0 eiNθ(x)

]
, x ∈ R . (172)

Normalization. The matrix CN (z) is normalized at z =∞ as follows:

lim
z→∞

CN (z) = I . (173)
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Note that according to the definition (171) of CN (z) in terms of BN (z) which satisfies det(BN (z)) ≡ 1,
we have det(CN (z)) ≡ 1.

Recalling the variational conditions (137)–(138) and the fact that by definition θ(x) is real-valued, we see
that the main point of introducing the equilibrium measure is that all entries of the jump matrix for CN (z)
are bounded in modulus by 1. In other words, the exponential growth as N → ∞ has been completely
eliminated by the proper choice of g(z). Bringing in the equilibrium measure has “stabilized” this Riemann-
Hilbert problem as we will now see in detail.

5.3 Step 2: Steepest descent for Riemann-Hilbert problems.

To get even more explicit, we stick with our working assumption that V is a convex analytic function, which
implies that the support of ψ(x) is an interval [α, β] and that ψ(x) is analytic in (α, β). Then, since

θ(x) ≡ 2π for x < α and θ(x) ≡ 0 for x > β, (174)

the jump condition (172) for CN (z) takes the form

CN
+ (x) = CN

− (x)
[
1 eN(`−δE/δψ(x))

0 1

]
, x ∈ R \ [α, β] (175)

which in view of the variational condition (138) involves an exponentially small perturbation of the identity
matrix in the limit N →∞ as long as x is fixed. The variational condition (137) then says that

CN
+ (x) = CN

− (x)
[
e−iNθ(x) 1

0 eiNθ(x)

]
, x ∈ [α, β] , (176)

and because ψ(x) > 0 in the support, θ(x) is a real analytic function that is strictly decreasing.
According to the Cauchy-Riemann equations, e−iNθ(z) is exponentially small as N →∞ when z is fixed

in the upper half-plane just above (α, β). Similarly eiNθ(z) is exponentially small as N →∞ when z is fixed
in the lower half-plane just below (α, β). Unfortunately, the jump matrix contains both exponentials, and
if we deform the contour either up or down from the real axis we will introduce exponential growth in one
jump matrix entry even though another will be exponentially small. And perhaps equally annoying is the
fact that the 1 never goes away at all.

We need a way to separate all of these effects. The key is to notice the following factorization:[
e−iNθ(x) 1

0 eiNθ(x)

]
=
[

1 0
eiNθ(x) 1

] [
0 1
−1 0

] [
1 0

e−iNθ(x) 1

]
. (177)

This separates the various effects at least algebraically. But now we may make a change of variables that will
allow us to convert oscillations on the real interval (α, β) into exponential decay on some nonreal contours.
Consider the definition of a new unknown matrix DN (z) in terms of CN (z) as shown in Figure 9. The
matrix DN (z) defined in this way satisfies its own Riemann-Hilbert problem (direct calculation) relative to
the oriented contour ΣD = R ∪ L+ ∪ L−:

Riemann-Hilbert Problem 6. Find a 2× 2 matrix-valued function DN (z) with the following properties:

Analyticity. DN (z) is an analytic function of z for z ∈ C \ ΣD taking continuous boundary values
DN
± (z) for z ∈ ΣD from each side.

Jump Condition. The boundary values are related by the following equations:

DN
+ (x) = DN

− (x)
[
1 eN(`−δE/δψ(x))

0 1

]
, x ∈ R \ [α, β] , (178)

DN
+ (x) = DN

− (x)
[

0 1
−1 0

]
, x ∈ (α, β) , (179)
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Figure 9: The definition of DN (z) in terms of CN (z) and two “lens-shaped” regions bounded by contours
L±.

DN
+ (z) = DN

− (z)
[

1 0
e±iNθ(z) 1

]
, z ∈ L∓ . (180)

Normalization. The matrix DN (z) is normalized at z =∞ as follows:

lim
z→∞

DN (z) = I . (181)

Note that by the explicit relation between DN (z) and CN (z) which satisfies det(CN (z)) ≡ 1, we have
det(DN (z)) ≡ 1.

5.4 Step 3: Construction of a parametrix for DN(z).

Here we will make a model for DN (z), called a parametrix.

5.4.1 Outer parametrix.

It is a fact that as a consequence of our preparation, the jump matrix relating the boundary values of DN (z)
on the contour ΣD has a pointwise limit as N → +∞. The only part of ΣD on which the limit is not the
identity matrix (no discontinuity of DN (z) in the limit) is the support interval (α, β). This looks simple
enough to solve explicitly.

Indeed, let us look for a 2× 2 matrix-valued function D̂out(z) that is analytic for z ∈ C \ [α, β], tends to
I as z →∞, and satisfies

D̂out+(x) = D̂out−(x)
[

0 1
−1 0

]
, x ∈ (α, β) . (182)

The eigenvalues of the jump matrix are ±i:[
0 1
−1 0

]
= U

[
i 0
0 −i

]
U† , U :=

[
e−iπ/4/

√
2 eiπ/4/

√
2

eiπ/4/
√

2 e−iπ/4/
√

2

]
. (183)
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(Note that U is a unitary eigenvector matrix.) Therefore, the matrix F(z) related explicitly to D̂out(z) by
the invertible similarity transformation

F(z) := U†D̂out(z)U (184)

also should be analytic for z ∈ C \ [α, β] and tend to I as z → ∞, but the jump condition on (α, β) is now
diagonal:

F+(x) = F−(x)
[
i 0
0 −i

]
, x ∈ (α, β) . (185)

Let’s seek F(z) as a diagonal matrix: F(z) = diag(F1(z), F2(z)), where Fj(z) is a scalar complex function
analytic for z ∈ C \ [α, β] with a limiting value of 1 at z =∞ and satisfying

F1+(x) = F1−(x)eiπ/2 and F2+(x) = F2−(x)e−iπ/2 , x ∈ (α, β) . (186)

These conditions constitute a pair of scalar Riemann-Hilbert problems for Fj(z).
Scalar Riemann-Hilbert problems can basically be handled by taking a logarithm (there are extra steps

required if the “index” is nonzero, but that is not the case here). Indeed, if we write Fj(z) in the form

Fj(z) = eLj(z) , (187)

where we suppose that the Lj(z) are analytic functions for z ∈ C \ [α, β] that tend to zero as z →∞, then
the jump conditions for Fj(z) are converted from multiplicative form to additive form:

L1+(x)− L1−(x) =
iπ

2
and L2+(x)− L2−(x) = − iπ

2
, x ∈ (α, β) . (188)

Suitable functions Lj(z) can then be found with the help of the Plemelj formula:

L1(z) = −L2(z) = (C[α,β](iπ/2))(z) =
1
4

∫ β

α

dx

x− z
=

1
4

log(z − β)− 1
4

log(z − α) . (189)

These are principal branches of the logarithm. Therefore

F1(z) = F2(z)−1 = γ(z) :=
(
z − β
z − α

)1/4

, (190)

and consequently the matrix
D̂out(z) = Uγ(z)σ3U† (191)

is a solution to the “pointwise asymptotic” of Riemann-Hilbert Problem 6. We call this function D̂out(z)
the outer parametrix for DN (z). Note that it does not depend on N at all, and it satisfies det(D̂out(z)) ≡ 1.

Note: it is this step of the analysis that becomes substantially more complicated if the equilibrium
measure ψ(x) dx associated with V turns out to have more than one support interval. In the general multi-
interval case the outer parametrix must be constructed from the Riemann theta functions of a hyperelliptic
Riemann surface of genus G > 0. The genus G is one less than the number of intervals of support. When
G > 0, the full force of (19th century) algebraic geometry is required to solve for the outer parametrix
D̂out(z).

5.4.2 Inner parametrices.

We might hope that D̂out(z) is a good approximation of DN (z), but unfortunately this cannot possibly be
true near the endpoints of [α, β] because the outer parametrix D̂out(z) blows up like a −1/4 power near
these two points, while the analyticity condition of Riemann-Hilbert Problem 6 insists that DN (z) should
take continuous (and hence bounded for each N) boundary values.

So, we have to make a better “local” model for DN (z) near z = α and z = β. For simplicity, we make the
further assumption (generically true for analytic convex V ) that the density ψ(x) of the equilibrium measure
vanishes exactly like a square root and no faster at z = α and z = β (our explicit formulae show that this
holds for V (x) = x2 and V (x) = x4, for example). We will give details of the construction near z = β; that
near z = α is similar.
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Writing the jump conditions for DN (z) in a good form. The idea is to look carefully at the jump
matrix for DN (z) near z = β. The function θ(z) is positive and decreasing to zero for real z < β, and it
vanishes like a multiple of (β − z)3/2 according to our working assumption about ψ(x). In fact, it can be
shown that the function

w(z) := −θ(z)2/3 (192)

is an analytic function of z in a full complex neighborhood of z = β. But more is true: w(β) = 0 and
w′(β) > 0, which means that the relation

w = w(z) (193)

defines a conformal mapping between a neighborhood of z = β and a neighborhood of w = 0. Next, consider
the analytic function

F (z) := `− V (z) + 2g(z) , ={z} > 0 . (194)

Taking a boundary value on the real line for x > β gives

F+(x) = `− V (x) + 2g+(x)
= `− V (x) + g+(x) + g−(x) (because g+(x) = g−(x) for x > β)

= `− δE

δψ
(x) x > β ,

(195)

while taking a boundary value on the support interval gives

F+(x) = `− V (x) + 2g+(x)
= g+(x)− g−(x) (because `− V (x) + g+(x) + g−(x) = 0 for x ∈ (α, β))
= iθ(x) , x ∈ (α, β)

= i(−w)3/2 , w < 0 .

(196)

Therefore, by analytic continuation through the upper half-plane for w we may also write

`− δE

δψ
(x) = −w3/2 , w > 0 . (197)

In this way, all jump matrices for DN (z) in a neighborhood of z = β can be written in terms of a single
variable w. Moreover, we can even scale out the N by setting

ζ := N2/3w , (198)

upon which we find that the jump conditions for DN (z) near z = β can be written in the form

DN
+ = DN

−

[
1 e−ζ

3/2

0 1

]
, ζ > 0 , (199)

DN
+ = DN

−

[
0 1
−1 0

]
, ζ < 0 , (200)

and

DN
+ = DN

−

[
1 0

eζ
3/2

1

]
, ζ ∈ N2/3w(L±) . (201)

As the contours L± are somewhat arbitrary, we choose them so that in a fixed neighborhood of z = β the
images of L± under the conformal map w are segments meeting w = 0 at the angles ±2π/3. See Figure 10.
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Figure 10: The conformal map w = w(z) maps a fixed disc centered at z = β to a fixed neighborhood of the
origin, straightening out the contours L±.

Matching condition. Local model Riemann-Hilbert problem. We will find an exact solution of
these jump conditions to use as an inner parametrix for DN (z) in a fixed z-neighborhood of z = β. We need
to figure out how this mystery function of ζ should behave as ζ → ∞. For this, the condition we have in
mind is that the inner parametrix we build should be a “match well” onto the outer parametrix. We can
easily write the outer parametrix in terms of ζ too: since

γ(z) = γ̃(z)w1/4 = γ̃(z)N−1/6ζ1/4 , (202)

where γ̃(z) is a function analytic and nonvanishing in a fixed neighborhood of z = β, we may write D̂out(z)
in the form

D̂out(z) = HN (z)ζσ3/4U† , (203)

where
HN (z) := Uγ̃(z)σ3N−σ3/6 (204)

is a matrix factor that is analytic in a neighborhood of z = β. Temporarily ignoring the analytic prefactor
(we’ll put it back later) we seek a matrix-valued function of ζ that satisfies the exact jump conditions for
DN (z) and also matches well onto the remaining two factors of D̂out(z) as ζ →∞. Thus, we seek a matrix
Z(ζ) that satisfies a Riemann-Hilbert problem relative to a contour ΣZ shown in Figure 11:

Riemann-Hilbert Problem 7. Find a 2× 2 matrix-valued function Z(ζ) with the following properties:

Analyticity. Z(ζ) is analytic for z ∈ C \ ΣZ and takes continuous boundary values on ΣZ.

Jump Condition. The boundary values are related as follows:

Z+(ζ) = Z−(ζ)
[
1 e−ζ

3/2

0 1

]
, ζ > 0 , (205)
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Figure 11: The (infinite) contour ΣZ in the ζ-plane.

Z+(ζ) = Z−(ζ)
[

0 1
−1 0

]
, ζ < 0 , (206)

Z+(ζ) = Z−(ζ)
[

1 0
eζ

3/2
1

]
, arg(ζ) = ±2π

3
. (207)

Normalization. The matrix Z(ζ) is normalized at ζ =∞ as follows:

lim
ζ→∞

Z(ζ)Uζ−σ3/4 = I . (208)

It turns out that Riemann-Hilbert Problem 7 has a unique solution, and moreover, we may build it
explicitly. This will require some use of special functions as we will now see. First, let’s make the simple
observation that if we make the substitution

W(ζ) = Z(ζ)e−ζ
3/2σ3/2 = Z(ζ)

[
e−ζ

3/2/2 0
0 eζ

3/2/2

]
, (209)

then, miraculously, the jump conditions become piecewise constant:

W+(ζ) = W−(ζ)
[
1 1
0 1

]
, ζ > 0 , (210)

W+(ζ) = W−(ζ)
[

0 1
−1 0

]
, ζ < 0 , (211)

and

W+(ζ) = W−(ζ)
[
1 0
1 1

]
, arg(ζ) = ±2π

3
. (212)
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The price we pay for this simplification is that the exponential factor appears in the normalization condition:

lim
ζ→∞

W(ζ)eζ
3/2σ3/2Uζ−σ3/4 = I . (213)

Finding W(ζ) in terms of special functions. Now, we observe the following: since the jump matrices
are all constant, the matrix dW/dζ also satisfies exactly the same jump conditions as does W itself. From
this we can expect that the product

Y(ζ) :=
dW
dζ

(ζ) ·W(ζ)−1 (214)

is an entire function of ζ. If we suppose that the condition (213) holds in the sense that

W(ζ)eζ
3/2σ3/2Uζ−σ3/4 = I + ζ−1B + o(ζ−1) (215)

with some constant matrix B as ζ → ∞, with this relation being differentiable with respect to ζ, then we
can easily extract the asymptotic behavior of Y(ζ) in this limit. Indeed, we find

Y(ζ) =
3i
4

[
B21 B22 −B11 − ζ
1 −B21

]
+ o(1) (216)

as ζ → ∞. But, since Y(ζ) is entire, it follows from Liouville’s Theorem that Y(ζ) is exactly equal to its
polynomial part at infinity:

Y(ζ) ≡ 3i
4

[
B21 B22 −B11 − ζ
1 −B21

]
(217)

Therefore, the matrix W(ζ) satisfies the first-order differential equation

dW
dζ

=
3i
4

[
B21 B22 −B11 − ζ
1 −B21

]
W . (218)

Setting

ξ =
(

3
4

)2/3

(ζ − c) , c := B2
21 +B22 −B11 , (219)

it follows by elimination that each element of the second row of W(ζ) satisfies the second-order linear
differential equation

d2w2

dξ2
− ξw2 = 0 . (220)

The differential equation (220) is called the Airy equation and its solutions are special functions generally
called Airy functions. One particular solution of the Airy equation is given by a contour integral (obtained
by solving the Airy equation by Laplace transform):

w2 = Ai(ξ) :=
1

2πi

∫
C

eξz−z
3/3 dz (221)

where C is any contour in the complex z-plane that begins at infinity with arg(z) = −2πi/3 and ends at
infinity with arg(z) = 2πi/3. This solution is called the Airy function (strangely, the other solutions are also
Airy functions, but only Ai(ξ) gets to be called the Airy function) and is real-valued for real ξ. A plot of
Ai(ξ) and its derivative Ai′(ξ) for real ξ is shown in Figure 12. Given that Ai(ξ) is a solution, it is easy to
check that Ai(ξe±2πi/3) are also solutions; however only two of these three are linearly independent because
by Cauchy’s Theorem we can easily deduce that

Ai(ξ) + e−2πi/3Ai(ξe−2πi/3) + e2πi/3Ai(ξe2πi/3) ≡ 0 (222)
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Figure 12: The Airy function Ai(ξ) (red) and its derivative Ai′(ξ) (blue) for real ξ.

(this is the only independent linear relation among the three solutions). By the (classical) method of steepest
descent for integrals,

Ai(ξ) =
1

2ξ1/4
√
π
e−2ξ3/2/3(1 +O(|ξ|−3/2)) Ai′(ξ) = − ξ

1/4

2
√
π
e−2ξ3/2/3(1 +O(|ξ|−3/2)) (223)

as ξ → ∞ in any direction of the complex plane except in the negative real direction. (There are other
formulae that hold for negative ξ going to infinity; the apparent discontinuity along the negative real ξ-axis
is “fake” and introduced by the asymptotics because all solutions of the Airy equation are entire functions
of ξ. This phenomenon is typical for a big class of differential equations and is called Stokes’ phenomenon.)

Let’s first construct W(ζ) in the region 0 < arg(ζ) < 2π/3 (labelled “I” in Figure 11) using Airy
functions. As a basis of solutions of the Airy equation we choose w2 = Ai(ξ) and w2 = Ai(ξe−2πi/3), since
our asymptotic formulae (223) hold in each case as ζ → ∞ in this sector. The second row of the general
solution of the system (218) may then be written in the form[

W21(ζ) W22(ζ)
]

=
[
a1Ai(ξ) + b1Ai(ξe−2πi/3) a2Ai(ξ) + b2Ai(ξe−2πi/3)

]
(224)

for some constants a1, a2, b1, and b2 that are free to be chosen to satisfy any auxiliary conditions. Now, we
use (223) to calculate the large-ζ behavior of the product

e(ζ)T :=
[
W21(ζ) W22(ζ)

]
eζ

3/2σ3/2Uζ−σ3/4

=
1

2
√

2π

(
4
3

)1/6

·
[
a1e
−iπ/4e3cζ1/2/4ζ−1/2(1 + o(1)) + b1e

−iπ/12eζ
3/2
e−3cζ1/2/4ζ−1/2(1 + o(1))

+ a2e
iπ/4e−ζ

3/2
e3cζ1/2/4ζ−1/2(1 + o(1)) + b2e

5πi/12e−3cζ1/2/4ζ−1/2(1 + o(1)) ,

a1e
iπ/4e3cζ1/2/4(1 + o(1)) + b1e

5πi/12eζ
3/2
e−3cζ1/2/4(1 + o(1))

+ a2e
−iπ/4e−ζ

3/2
e3cζ1/2/4(1 + o(1)) + b2e

−iπ/12e−3cζ1/2/4(1 + o(1))
]
,

(225)

as ζ →∞ with 0 < arg(ζ) < 2π/3. According to the normalization condition imposed on W(ζ) we need to
arrive at a result of the form

e(ζ)T =
[
0 1

]
+ ζ−1

[
B21 B22

]
+ o(ζ)−1 (226)

as ζ →∞ with 0 < arg(ζ) < 2π/3. Equating these two expressions has several implications:
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1. The terms proportional to e±ζ
3/2

grow exponentially as ζ → ∞ in different parts of the sector 0 <
arg(ζ) < 2π/3, so these terms are inconsistent with the desired asymptotics. The only way to resolve
this difficulty is to make the choice that

b1 = 0 and a2 = 0 . (227)

2. The next troublesome terms are those proportional to e±3cζ1/2/4 as these terms all grow exponentially
as ζ → ∞ somewhere in the sector 0 < arg(ζ) < 2π/3 unless c = 0. We could remove these terms by
choosing the remaining coefficients a1 and b2 to vanish, but this would leave us with e(ζ)T ≡ 0, which
also is inconsistent with the desired asymptotics. Therefore, we are forced to accept the condition that

c = B2
21 +B22 −B11 = 0 . (228)

With b1 = a2 = c = 0, the asymptotic formula for e(ζ)T simplifies and the error estimates become
more precise:

e(ζ)T =
1

2
√

2π

(
4
3

)1/6 [
(e−iπ/4a1 + e5πi/12b2)ζ−1/2 +O(|ζ|−2) , (eiπ/4a1 + e−iπ/12b2) +O(|ζ|−3/2)

]
.

(229)

3. The final “offensive” term is the one proportional to ζ−1/2 as this is large compared with the desired
rate of decay of ζ−1. Therefore, we make the choice that

e−iπ/4a1 + e5πi/12b2 = 0 . (230)

Then, to get the normalization constant correct, we make the choice that

eiπ/4a1 + e−iπ/12b2 = 2
√

2π
(

3
4

)1/6

. (231)

Taken together, equations (230) and (231) imply that

a1 = e−iπ/4
√

2π
(

3
4

)1/6

and b2 = eiπ/12
√

2π
(

3
4

)1/6

. (232)

Therefore, we have determined the second row of W(ζ) in the sector 0 < arg(ζ) < 2π/3:[
W21(ζ) W22(ζ)

]
=
[
e−iπ/4

√
2π
(

3
4

)1/6
Ai(( 3

4 )2/3ζ) eiπ/12
√

2π
(

3
4

)1/6
Ai(( 3

4 )2/3ζe−2πi/3)
]
, (233)

and we have also learned (because the error terms in (229) are o(ζ−1) in each case) that

B21 = B22 = 0 . (234)

Now, since B21 = 0, the second equation of the system (218) implies that[
W11(ζ) W12(ζ)

]
=
[
− 4i

3 W
′
21(ζ) − 4i

3 W
′
22(ζ)

]
=
[
e−3πi/4

√
2π
(

4
3

)1/6
Ai′(( 3

4 )2/3ζ) e11πi/12
√

2π
(

4
3

)1/6
Ai′(( 3

4 )2/3ζe−2πi/3)
]
.

(235)

Applying the asymptotic formulae (223) shows that[
W11(ζ) W12(ζ)

]
eζ

3/2σ3/2Uζ−σ3/4 =
[
1 +O(|ζ|−3/2) , O(|ζ|−1)

]
(236)

as ζ →∞ with 0 < arg(ζ) < 2π/3. This confirms that B11 = 0 (which together with (234) is consistent with
(228)) and shows that the only element of B that might not be zero is B12.

36



The result of our work is that

W(ζ) = WI(ζ) :=

[
e−3πi/4

√
2π
(

4
3

)1/6
Ai′(( 3

4 )2/3ζ) e11πi/12
√

2π
(

4
3

)1/6
Ai′(( 3

4 )2/3ζe−2πi/3)
e−iπ/4

√
2π
(

3
4

)1/6
Ai(( 3

4 )2/3ζ) eiπ/12
√

2π
(

3
4

)1/6
Ai(( 3

4 )2/3ζe−2πi/3)

]
(237)

for 0 < arg(ζ) < 2π/3. This completes the construction of W(ζ) in the sector labeled “I” in Figure 11.
To build W(ζ) in the other three regions of the complex plane, it is easiest to take advantage of the

constant jump conditions this matrix satisfies. For example, to get W(ζ) in the sector 2π/3 < arg(ζ) < π
(labeled “II” in Figure 11), use the jump for W(ζ) between sectors I and II to get

WII(ζ) = WI(ζ)
[
1 0
1 1

]−1

(238)

and then use the identity (222) to write the result in terms of Ai(( 3
4 )2/3ζe±2πi/3) and their derivatives (this

basis of solutions has no Stokes phenomenon in the sector of interest). The result is that

W(ζ) = WII(ζ) :=

[
e−5πi/12

√
2π
(

4
3

)1/6
Ai′(

(
3
4

)2/3
ζe2πi/3) e11πi/12

√
2π
(

4
3

)1/6
Ai′(( 3

4 )2/3ζe−2πi/3)
e−7πi/12

√
2π
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3
4

)1/6
Ai(
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3
4

)2/3
ζe2πi/3) eiπ/12

√
2π
(

3
4

)1/6
Ai(( 3

4 )2/3ζe−2πi/3)

]
(239)

holds for 2π/3 < arg(ζ) < π.
Moving in this way from one sector to the next using the constant jump conditions for W(ζ) gives

W(ζ) = WIV(ζ) :=

[
e−3πi/4

√
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3

)1/6
Ai′(
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)2/3
ζ) e7πi/12

√
2π
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3

)1/6
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(
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)2/3
ζe2πi/3)
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√
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)1/6
Ai(
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ζ) e5πi/12
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3
4

)1/6
Ai(
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3
4

)2/3
ζe2πi/3)

]
(240)

holds for −2π/3 < arg(ζ) < 0 (in the sector labeled “IV” in Figure 11). Finally,

W(ζ) = WIII(ζ) :=

[
e11πi/12

√
2π
(
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3

)1/6
Ai′(
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4

)2/3
ζe−2πi/3) e7πi/12

√
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(

4
3
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ζe2πi/3)

eiπ/12
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(
3
4

)1/6
Ai(
(

3
4

)2/3
ζe2πi/3)

]
(241)

holds for −π < arg(ζ) < −2π/3 (in the sector labeled “III” in Figure 11.
It is easy to verify from these formulae that as ζ →∞ in every direction of the complex plane,

W(ζ)eζ
3/2σ3/2Uζ−σ3/4 = I +

[
O(|ζ|−3/2) O(|ζ|−1)
O(|ζ|−2) O(|ζ|−3/2)

]
. (242)

also, it can be shown (this requires knowing the Wronskians of pairs of Ai(ξ), Ai(ξe2πi/3), and Ai(ξe−2πi/3))
that det(W(ζ)) ≡ 1.

The inner parametrix for DN (z). As our model for DN (z) near z = β, we set

D̂N
β (z) := HN (z)Z(N2/3w(z)) = HN (z)W(N2/3w(z))eNw(z)3/2σ3/2 . (243)

A similar procedure, carried out near z = α, results in a second inner parametrix D̂N
α (z). Both of these

matrices have determinants equal to 1.

5.4.3 Global parametrix.

Let Uα and Uβ be two small discs of radius independent of N that are centered at z = α and z = β
respectively. We are now ready to define our global parametrix, a matrix-valued function of z that we expect
to be a good approximation to DN (z) uniformly in the complex plane. We now set

D̂N (z) :=


D̂out(z) , z ∈ C \ (Uα ∪ Uβ)
D̂N
α (z) , z ∈ Uα

D̂N
β (z) , z ∈ Uβ .

(244)
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This matrix satisfies det(D̂N (z)) ≡ 1 at each point of its definition in the complex plane.

5.5 Step 4: Comparison of DN(z) with its parametrix. Arrival at near-identity
target Riemann-Hilbert problem.

The global parametrix D̂N (z) has now been explicitly constructed, and we may compare it with the (un-
known) solution DN (z) of Riemann-Hilbert Problem 6 by defining a new unknown EN (z) in terms of DN (z):

EN (z) := DN (z)D̂N (z)−1 . (245)

Note that this relation implies that det(EN (z)) ≡ 1. Moreover, by the general equivalence principles de-
scribed earlier, the matrix EN (z) satisfies a Riemann-Hilbert problem because DN (z) does and because
the global parametrix is given. The oriented contour ΣE on which EN (z) has discontinuities is shown in
Figure 13. The fact that all of the contours within the discs Uα and Uβ as well as the rest of the support

L+

L−

∂Uα ∂Uβ

Figure 13: The contour ΣE of discontinuity for EN (z). This contour is independent of N .

interval (α, β) have “disappeared” follows from the facts that

1. The outer parametrix D̂out(z) satisfies exactly the same jump condition on the support interval as does
DN (z).

2. The inner parametrix D̂N
β (z) satisfies exactly the same jump conditions on all four contours within Uβ

as does DN (z). A similar statement holds for D̂N
α (z).

Furthermore, it is a consequence of our definition of the global parametrix that the Riemann-Hilbert problem
satisfied by EN (z) is a near-identity problem in the limit N → +∞. This Riemann-Hilbert problem has the
following form:

Riemann-Hilbert Problem 8. Find a 2× 2 matrix-valued function EN (z) with the following properties:

Analyticity. EN (z) is an analytic function for z ∈ C \ΣE, taking continuous boundary values EN
± (z)

from each side of ΣE.

Jump Condition. The boundary values are related as follows. At each point z of Σ \ (∂Uα ∪ ∂Uβ),

EN
+ (z) = EN

− (z) (I + uniformly exponentially small as N → +∞) , (246)

and at each point z of ∂Uα or ∂Uβ,

EN
+ (z) = EN

− (z)
(
I +O(N−1)

)
. (247)
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Normalization. The matrix EN (z) is normalized at z =∞ as follows:

lim
z→∞

EN (z) = I . (248)

Let’s see why the jump matrix is a small perturbation of the identity matrix, as claimed above. To prove
(246), just note that on these parts of ΣE, the jump matrix for DN (z) is already a small perturbation of I
while the outer parametrix D̂out(z) and its inverse are uniformly bounded (because z is bounded away from
z = α and z = β on these parts of ΣE) and independent of N . And to prove (247), note that there is no
discontinuity of DN (z) on the two circles ∂Uα and ∂Uβ , so the mismatch just comes from the discontinuity
of the parametrix. On ∂Uβ with “+” indicating the outside and “−” the inside:

E+(z) = DN (z)D̂out(z)−1 = DN (z)D̂N
β (z)−1 · D̂N

β (z)D̂out(z)−1 = E−(z)D̂N
β (z)D̂out(z)−1 , (249)

and the jump matrix is

D̂N
β (z)D̂out(z)−1 = HN (z)W(N2/3w(z))e−Nw(z)3/2σ3/2 ·Uζ−σ3/4HN (z)−1

= HN (z)
(

I +
[
O(N−1) O(N−2/3)
O(N−4/3) O(N−1)

])
HN (z)−1

= Uγ̃(z)σ3/4(I +O(N−1))γ̃(z)−σ3/4U†

= I +O(N−1) .

(250)

Thus, EN (z) satisfies a near-identity Riemann-Hilbert problem, so by series solution of the system of
associated integral equations, we learn that for each fixed z not on the contour ΣE,

EN (z) = I +O(N−1) (251)

as N → +∞. This implies that the unknown DN (z) is close to the parametrix D̂N (z), because

DN (z) = EN (z)D̂N (z) = (I +O(N−1))D̂N (z) . (252)

Furthermore, as AN (z) is related to DN (z) by explicit steps, we obtain at last asymptotically valid formulae
for all of the matrix elements of AN (z). In particular, we obtain the first column from which the kernel
KN (x, y) can be extracted. For example, if we suppose z to lie in the upper half-plane just above a point in
(α, β), then by unraveling the relation between AN (z) and DN (z) in this region,

AN (z) = e−N`σ3/2EN (z)D̂out(z)
[

1 0
e−iNθ(z) 1

]
eN(g(z)+`/2)σ3 , (253)

where we recall that D̂out(z) denotes the outer parametrix obtained explicitly in §5.4.1.
Note: in fact we obtain asymptotic information about derivatives of AN (z) because if C is a positively

oriented circle of radius R centered at z and C does not intersect ΣE, then by Cauchy’s formula

dkEN

dzk
(z) =

k!
2πi

∮
C

(w − z)−(k+1)EN (w) dw =
k!

2πi

∮
C

(w − z)−(k+1)(EN (w)− I) dw = O(N−1) . (254)

(The constant in the bound depends on k and R.)

6 Implications for Random Matrix Theory.

The asymptotic formulae for KN (x, y) obtained by “Riemann-Hilbert” analysis show that for completely
arbitrary convex analytic V (x) (and in fact an even broader class of potentials),
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1. The one-point function satisfies
R

(1)
N (x) = Nψ(x) +O(1) (255)

as N → +∞, where ψ(x) is the density of the equilibrium measure associated with the potential V (x).
As this depends on V , the limiting distribution of eigenvalues is not universal. One only gets the
Wigner semicircle law if V (x) is proportional to x2.
The proof of (255) begins with the exact formula

R
(1)
N (x) = −e

−NV (x)

2πi
[
AN ′11 (x)AN21(x)−AN11(x)AN ′21 (x)

]
. (256)

Note that taking a limit from the upper half-plane in (253),

AN11+(x) = eNg+(x)(END̂out)11+(x) + eNg+(x)e−iNθ(x)(END̂out)12+(x) ,

AN21+(x) = eN(V (x)−g+(x))eiNθ(x)(END̂out)21+(x) + eN(V (x)−g+(x))(END̂out)22+(x) .
(257)

Differentiation of these formulae, using only the fact that derivatives of EN (z)D̂out(z) remain uniformly
bounded as N → +∞, gives

AN ′11+(x) = NeNg+(x)
[
g′+(x)(END̂out)11+(x) + (g′+(x)− iθ′(x))e−iNθ(x)(END̂out)12+(x) +O(N−1)

]
,

AN ′21+(x) = NeN(V (x)−Ng+(x))
[
(V ′(x)− g′+(x) + iθ′(x))eiNθ(x)(END̂out)21+(x)

+ (V ′(x)− g′+(x))(END̂out)22+(x) +O(N−1)
]
.

(258)

Assembling the ingredients,

R
(1)
N (x) = − N

2πi

[
(2g′+(x)− V ′(x)− iθ′(x))

[
eiNθ(x)(END̂out)11+(x)(END̂out)21+(x)

+ e−iNθ(x)(END̂out)12+(x)(END̂out)22+(x) + (END̂out)11+(x)(END̂out)22+(x)

+ (END̂out)12+(x)(END̂out)21+(x)
]

+ iθ′(x) det(END̂out)+(x) +O(N−1)
]
.

(259)

But det(EN (z)) ≡ 1 and det(D̂out(z)) ≡ 1, and in the support interval (α, β),

2g′+(x) = (g′+(x) + g′−(x)) + (g′+(x)− g′−(x)) = V ′(x) + iθ′(x) (260)

so
R

(1)
N (x) = − N

2πi
(
iθ′(x) +O(N−1)

)
, (261)

and differentiating the definition of θ(x) we obtain θ′(x) = −2πψ(x) which gives (255).

2. If x ∈ (α, β) is fixed and ξ1, . . . , ξn all lie in a bounded set, then

R
(n)
N (x+N−1∆(x)ξ1, . . . , x+N−1∆(x)ξn)

= Nnψ(x)n det


S(ξ1, ξ1) S(ξ1, ξ2) · · · S(ξ1, ξn)
S(ξ2, ξ1) S(ξ2, ξ2) · · · S(ξ2, ξn)

...
...

...
...

S(ξn, ξ1) S(ξn, ξ2) · · · S(ξn, ξn)

+O(Nn−1) (262)

as N → +∞ (with n fixed), where S(ξ, η) is the sine kernel and ∆(x) = ψ(x)−1 is proportional to the
asymptotic mean spacing. This is again obtained by expanding the kernel KN (x, y) written in terms
of the first column of AN (z) as above; it is a “higher-order” calculation.

3. A similar result gives Airy kernel correlations near the edge, and universality of the Tracy-Widom law
for extreme eigenvalues. Here one needs to use the inner parametrix, which explains the Airy functions.
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