
APPENDIX 1. QUOTIENTS BY FINITE GROUP ACTIONS AND
GROUND FIELD EXTENSIONS OF ALGEBRAIC VARIETIES

We recall in this appendix some basic facts about quotients of quasiprojective
schemes by finite group actions, following [SGA1]. As an application, we discuss in the
second section some generalities concerning ground field extensions for algebraic varieties.

1. The general construction

Let Y be a scheme of finite type over a field k, and let G be a finite group, acting (on
the right) on Y by algebraic automorphisms over k. We denote by σg the automorphism
corresponding to g ∈ G. A quotient of Y by G is a morphism π : Y → W with the
following two properties:

i) π is G-invariant, that is π ◦ σg = π for every g ∈ G.
ii) π is universal with this property: for every scheme Z over k, and every G-invariant

morphism f : Y → Z, there is a unique morphism h : W → Z such that h ◦π = f .

It is clear from this universal property that if a quotient exists, then it is unique, up to a
canonical isomorphism. In this case, we write W = Y/G.

We start by considering the case when Y = SpecA is an affine scheme. Note that G
acts on A on the left. We show that the induced morphism π : SpecA → W = SpecAG

is the quotient of Y by G.

Proposition 1.1. With the above notation, the following hold:

i) W is a scheme of finite type over k, and π is a finite, surjective morphism.
ii) The fibers of π are precisely the orbits of the G-action on Y .
iii) The topology on W is the quotient topology.
iv) We have a natural isomorphism OW = π∗(OY )G.

Proof. It is clear that AG ↪→ A is integral: indeed, for every u ∈ A, we have P (u) = 0,
where P =

∏
g∈G(x − gu) ∈ AG[x]. Since A is finitely generated over k, it follows that

there is a finitely generated k-algebra B ⊆ AG such that A is integral over B, hence finite
over B. Since B is Noetherian, it follows that AG is a finite over B. We conclude that AG

is a finitely generated k-algebra, and the morphism π is finite. Since AG → A is injective,
it follows that π is surjective.

It is clear that π is G-invariant, hence each orbit is contained in a fiber. Conversely,
if P,Q are primes in A such that P ∩AG = Q∩AG, then P ⊆

⋃
g∈G gQ. Indeed, if u ∈ P ,

then ∏
g∈G

(gu) ∈ P ∩ AG = Q ∩ AG,
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hence there is g ∈ G such that gu ∈ Q. The Prime Avoidance Lemma implies that P ⊆ gQ
for some g ∈ G. Similarly, we get Q ⊆ hP for some h ∈ G. Since P ⊆ ghP , and gh is an
automorphism, we must have P = ghP , hence P = gQ.

This proves ii), and the assertion in iii) is now clear since π is closed, being finite. It
is easy to deduce iv) from the fact that if f ∈ AG, then (Af )

G = (AG)f . This completes
the proof of the proposition. �

Remark 1.2. Suppose that Y is a scheme with an action of the finite group G. If π : Y →
W is a surjective morphism of schemes that satisfies ii)-iv) in Proposition 1.1, then π gives
a quotient of Y by G. This is a consequence of the definition of morphisms of schemes. In
particular, we see that the morphism π : Y → W in Proposition 1.1 is such a quotient.

Corollary 1.3. If π : Y → W is as in the proposition, then for every open subset U of
W , the induced morphism π−1(U)→ U is the quotient of π−1(U) by the action of G.

Proof. It is clear that since π is a surjective morphism that satisfies ii)-iv) in the above
proposition, the morphism π−1(U)→ U satisfies the same properties. �

Suppose now that Y is a scheme over k, with an action of G. We assume that every
y ∈ Y has an affine open neighborhood that is preserved by the G-action. This happens,
for example, if Y is quasiprojective. Indeed, in this case for every y ∈ Y , the finite set
{σg(y) | g ∈ G} is contained in some affine open subset U of Y 1. After replacing U by
∩g∈Gσg(U) (this is again affine, since Y is separated), we may assume that U is affine,
and preserved by the action of G.

By assumption, we can thus cover Y by U1, . . . , Ur, where each Ui is affine, and
preserved by the G-action. By what we have discussed so far, we may construct the
quotient morphisms πi : Ui → Wi = Ui/G. Furthermore, it follows from Corollary 1.3
that for every i and j we have canonical isomorphisms πi(Ui ∩ Uj) ' πj(Ui ∩ Uj). We
can thus glue these morphisms to get a quotient π : Y → Y/G of Y with respect to the
G-action. Note that this is a finite surjective morphism that satisfies conditions ii)-iv) in
Proposition 1.1, hence gives a quotient of Y by the action of G.

Remark 1.4. It follows from the above construction that if Y is reduced, then Y/G is
reduced too.

Remark 1.5. The above construction is compatible with field extensions in the following
sense. Suppose that Y is a scheme over k with an action of the finite group G, such that
every point on Y has an affine open neighborhood preserved by the G-action. Suppose
that K/k is a field extension, and YK = Y ×Spec k SpecK. Note that YK has an induced
G-action, and every point on YK has an affine open neighborhood preserved by the G-
action. We have an isomorphism of K-varieties YK/G ' (Y/G)×Spec k SpecK. Indeed, it

1If Y is a locally closed subset of Pn
k , and x1, . . . , xn ∈ Y , then there is a hypersurface H in Pn

k

that contains Y r Y , but does not contain x1, . . . , xn. Indeed, by the graded version of Prime Avoidance
Lemma, there is a homogeneous element of positive degree in the ideal of Y r Y (if this set is empty, we

take this ideal to be the “irrelevant” maximal ideal), but that does not lie in the ideal of any {xi}. The
complement of H in Y is an affine open subset of Y that contains all the xi.
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is enough to consider the case when Y = SpecA, and in this case the assertion follows
from the lemma below.

Lemma 1.6. Let V and W be k-vector spaces, and suppose that a group G acts on V on
the left by k-linear automorphisms. If we consider on V ⊗kW the induced G-action, then
we have a canonical isomorphism (V ⊗k W )G ' V G ⊗k W .

Proof. We clearly have an inclusion V G ⊗k W ↪→ (V ⊗k W )G. Consider u ∈ V ⊗k W . If
(bi)i∈I is a k-basis of W , we can write u =

∑
i ai ⊗ bi for a unique tuple (ai)i∈I . Since

gu =
∑

i(gai) ⊗ bi, it follows that gu = u if and only if gai = ai for every i. Therefore
u ∈ (V ⊗k W )G if and only if all ai lie in V G. �

Proposition 1.7. Let G and H be finite groups, acting by algebraic automorphisms over
k on the schemes X and Y , respectively, where X and Y are of finite type over k. If both
X and Y can be covered by affine open subsets preserved by the action of the corresponding
group, then X×Y satisfies the same property with respect to the product action of G×H,
and X × Y/G×H ' X/G× Y/H.

Proof. Let X =
⋃
i Ui and Y =

⋃
j Vj be covers by affine open subsets, preserved by the

respective group actions. It is clear that X × Y =
⋃
i,j Ui × Vj is a cover by affine open

subsets preserved by the G×H-action. Furthermore, using Lemma 1.6 twice, we obtain

(O(Ui)⊗k O(Vj))
G×H ' O(Ui)

G ⊗k O(Vj)
H ,

and these isomorphisms glue together to give the isomorphism in the proposition. �

Proposition 1.8. Let G be a finite group acting by algebraic automorphisms on a scheme
X of finite type over k, such that X has an affine open cover by subsets preserved by the
G-action. Suppose that H is a subgroup of G, and Y is an open subset of X such that

i) Y is preserved by the action of H on X.
ii) If Hg1, . . . , Hgr are the right equivalence classes of G mod H, then X =

⋃r
i=1 Y gi

is a disjoint cover.

In this case the natural morphism Y/H → X/G is an isomorphism.

Proof. Note that by ii), Y is also closed in X. Consider a cover X =
⋃
j Uj by affine

open subsets preserved by the G-action. Each Vj = Y ∩ Uj is an affine open subset of Y
preserved by the H-action (note that Uj ∩ Y is nonempty since Uj must intersect some
Y gi). Therefore we have the quotient Y/H, and since the natural morphism Y → X/G is
H-invariant, we obtain a morphism ϕ : Y/H → X/G.

We claim that each Y ∩ Uj ↪→ Uj still satisfies i) and ii). Indeed, it is clear that
Y ∩Uj is preserved by the H-action, and we have Uj =

⊔r
i=1(Y ∩Uj)gi. Therefore we may

assume that X and Y are affine.

It follows from ii) that O(X) =
∏r

i=1O(Y gi), and it is clear that if ϕ ∈ O(X)G,
then ϕ = (ψg−11 , . . . , ψg−1r ) for some ψ ∈ O(Y ), and in fact we must have ψ ∈ O(Y )H .
This shows that the natural homomorphism O(X)G → O(Y )H is an isomorphism. �
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Remark 1.9. Given X as in the above proposition, suppose that Y is an open subset of
X such that for every g, h ∈ G, the sets Y g and Y h are either equal, or disjoint. In this
case i) and ii) are satisfied if we take H = {g ∈ G | Y g = Y } and if we replace X by⋃
g∈G Y g.

Proposition 1.10. Let G be a finite group acting by algebraic automorphisms on a scheme
X of finite type over k, such that X has an affine open cover by subsets preserved by the
G × H-action. If H is a normal subgroup of G, then X/H has an induced G/H-action,
and the quotient by this action is isomorphic to X/G.

Proof. Let X =
⋃
i Ui be an affine open cover of X, with each Ui preserved by the G-

action. In particular, each Ui is preserved by the G-action, hence the quotient X/G exists.
The action of G on X induces an action of G/H on X/H by the universal property of
the quotient. Note that the Ui/H give an affine open cover of X/H by subsets preserved
by the G/H-action. Since we clearly have O(Ui)

G = (O(Ui)
H)G/H , we get isomorphisms

of the quotient of Ui/H by the G/H-action with Ui/G. These isomorphisms glue to give
the required isomorphism. �

2. Ground field extension for algebraic varieties

Let X be a variety over a field k (recall that this means that X is a reduced scheme
of finite type over k). Let K/k be a finite Galois extension, with group G, and put
XK = X ×Spec k SpecK. Note that this is a variety over K, since the extension K/k is
separable. Since K is flat over k, we see that the canonical projection |pi : XK → X is
flat.

The left action of G on K induces a right action of G on SpecK, hence on XK

(note that the corresponding automorphisms of XK are k-linear, but not K-linear). If
x ∈ XK and V is an affine open neighborhood of π(x), then π−1(U) is an affine open
neighborhood of x, preserved by the G-action. Therefore we may apply to the G-action
on XK the considerations in the previous section. In fact, π is the quotient of XK by the
action of G. Indeed, it is enough to note that if U ' Spec(A) is an affine open subset of
X, then Lemma 1.6 gives

(A⊗k K)G = A⊗k KG = A.

By the discussion in the previous section, it follows that π identifies X with the set of
G-orbits of XK , with the quotient topology.

If Y ↪→ X is a closed subvariety, then YK ↪→ XK is a closed subvariety preserved by
the G-action. The following proposition gives a converse.

Proposition 2.1. With the above notation, suppose that W is a closed subvariety of
XK preserved by the G-action. If Y = π(W ), then W is a closed subvariety of X, and
W = YK.

Proof. Since π is finite, it follows that Y is closed in X. We clearly have an inclusion
W ⊆ YK . This is an equality of sets since W is preserved by the G-action, and π identifies
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X with the set of G-orbits in XK . Since both W and YK are reduced, it follows that
W = YK . �

The above considerations can be easily extended to the case of infinite Galois ex-
tensions. In what follows, we assume that k is perfect, and consider an algebraic closure
k of k. Note that k is the union of the finite Galois subextensions K of k, and we have
G(k/k) ' lim←−

K

G(K/k). As above, if X is a variety over k, we put Xk = X ×Spec k Spec k,

and let π : Xk → X be the canonical projection. Note that since k is perfect, all fibers of
π are reduced. We have a right action of G(k/k) on Xk, induced by its left action on k.

Proposition 2.2. If W is a closed subvariety of Xk that is preserved by the G-action,
and if Y = π(W ), then Y is a closed subvariety of X, and W = Yk (in this case we say
that W is defined over k).

Proof. The fact that Y is closed in X follows from the fact that π is an integral morphism.
There is a finite Galois extension K of k such that for some closed subscheme V of XK ,
we have Vk = W . After replacing V by Vred, we may assume that V is reduced, in which
case we see that it is the image of W via the canonical projection Xk → XK . Since W is
preserved by the G(k/k)-action, it follows that V is preserved by the G(K/k)-action (recall
that G(K/k) is the quotient of G(k/k) by G(k/K)). We may thus apply Proposition 2.1
to conclude that V = YK , and therefore W = Yk. �

Proposition 2.3. The fibers of the projection π : Xk → X are the orbits of the G(k/k)-
action on Xk.

Proof. It is clear from definition that G(k/k) acts on Xk by automorphisms over X.
Suppose now that x, y ∈ Xk are such that π(x) = π(y). There is a finite Galois extension

K of k such that both {x} and {y} are defined over K, and let xK and yK denote the
images of x and y, respectively, in XK . Since xK and yK lie in the same fiber of XK → X,
we can find σ ∈ G(K/k) such that xKσ = yK . In this case, for every σ̃ ∈ G(k/k) that
extends σ, we have xσ = y. �

Proposition 2.4. If X is an irreducible variety over k, then G = G(k/k) acts transitively
on the set of irreducible components of Xk.

Proof. Note first that every automorphism of Xk maps an irreducible component to an
irreducible component, hence G indeed has an induced action on the set of irreducible
components of Xk. Let V and W be irreducible components of Xk. Since Xk is flat over
X, and X is irreducible, it follows that both V and W dominate X. Therefore the generic
points of V and W lie in the same fiber of π, and we conclude by applying the previous
proposition. �

Proposition 2.5. If X is a variety over k and π : Xk → X is the canonical projection,
then taking x ∈ X to the sum of the elements in π−1(x) induces a bijection between the
set of effective 0-cycles on X of degree n and the set of effective 0-cycles on Xk that have
degree n and that are fixed by G(k/k).
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Proof. By Proposition 2.3, an effective cycle α on Xk is invariant by G(k/k) if and only
if for every closed point x ∈ Xk that appears in α, all y ∈ π−1(π(x)) appear in α with
the same coefficient. In other words, α can be written as

∑r
i=1

∑
y∈π−1(ui)

y for some
u1, . . . , ur ∈ X. In order to complete the proof, it is enough to note that for every u ∈ X,
we have deg(k(u)/k) = |π−1(u)| (recall that π−1(u) is reduced). �

Suppose now that k = Fq is a finite field. Recall that G(k/k) ' Ẑ, and we may take
as a topological generator either the arithmetic Frobenius element x→ xq, or its inverse,
the geometric Frobenius element. Let σ denote the automorphism of Xk corresponding to
the action of the arithmetic Frobenius element. Recall that the endomorphism FrobX,q on

X induces by base extension the k-linear endomorphism F = FrobXk,q
of Xk.

Proposition 2.6. Let X be a variety over k = Fq, and W a closed subvariety of Xk.
There is a closed subvariety Y of XFqr

such that W = Yk (in which case Y is the image
of W in XFqr

) if and only if F r(W ) ⊆ W .

Proof. After replacing X by XFqr
, we may assume that r = 1. We have seen in Exercise 2.5

in Lecture 2 that σ ◦ F = F ◦ σ, and this is the absolute q-Frobenius morphism of Xk

(let’s denote it by T ). Since T (W ) = W for every closed subvariety W of Xk, it is easy
to see that σ−1(W ) ⊆ W if and only if F (W ) ⊆ W (in which case F (W ) = W ).

Applying Proposition 2.2, we are done if we show that if σ−1(W ) ⊆ W , then W is
preserved by G(k/k). Since the geometric Frobenius element is a topological generator of
G(k/k), this follows from the fact that the action of G(k/k) on Xk is continuous, where on
Xk we consider the discrete topology. Continuity simply means that the stabilizer of every
point in Xk contains a subgroup of the form G(k/K), for some finite Galois extension K

of k. This is clear for Xk, since it is clear for An
k
: for the point (u1, . . . , un) ∈ kn, we may

simply take K to be the Galois closure of k(u1, . . . , un). �

3. Radicial morphisms

We will need the notion of radicial morphism in the next section, in order to discuss
quotients of closed subschemes. In this section we recall the definition of this class of
morphisms and prove some basic properties.

Proposition 3.1. If f : X → Y is a morphism of schemes, then the following are equiv-
alent:

i) For every field K (which may be assumed algebraically closed), the induced map

Hom(SpecK,X)→ Hom(SpecK,Y )

is injective.
ii) For every scheme morphism Y ′ → Y , the morphism induced by base-change

X ×Y Y ′ → Y ′ is injective.
iii) f is injective, and for every x ∈ X, the extension of residue fields k(f(x)) ↪→ k(x)

is purely inseparable.
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If f satisfies the above equivalent conditions, one says that f is radicial.

Proof. We first prove i)⇒ii). Let Y ′ → Y be a morphism of schemes, and suppose that
x1, x2 ∈ X ×Y Y ′ are two distinct points that map to the same point y ∈ Y ′. Let K be
a field extension of k(y) containing both k(x1) and k(x2) (note that we may take K to
be algebraically closed). The inclusions k(x1), k(x2) ↪→ K give two distinct morphisms
SpecK → X ×Y Y ′ such that the induced morphisms to Y ′ are equal. In particular, the
induced morphisms to Y are equal, hence by i) the induced morphisms to X are equal.
The universal property of the fiber product shows that we have a contradiction.

We now prove ii)⇒i). Suppose that ϕ, ψ : SpecK → X induce the same morphism
SpecK → Y , and let XK = X×Y SpecK. By the universal property of the fiber product,

ϕ and ψ induce morphisms ϕ̃, ψ̃ : SpecK → XK over Spec K. These correspond to two

points x1, x2 ∈ XK and to isomorphisms K ' k(xi). By ii) we have x1 = x2, hence ϕ̃ = ψ̃
and ϕ = ψ.

Suppose now that i) holds, and let us deduce iii). The fact that f is injective follows
since we know i)⇒ii), so let us suppose that x ∈ X and y = f(x) are such that k(y) ↪→
k(x) is not purely inseparable. In this case there is a field K and two homomorphisms
α, β : k(x) → K such that α and β agree on k(y). We thus get two scheme morphisms
SpecK → X taking the unique point to x, such that they induce the same morphism
SpecK → Y . This contradicts i).

In order to complete the proof of the proposition, it is enough to show that iii)⇒i).
Suppose that u, v : SpecK → X are such that f ◦ u = f ◦ v. Since f is injective, it
follows that both u and v take the unique point to the same x ∈ X. We thus have two
homomorphisms k(x)→ K whose restrictions to k(f(x)) are equal. This shows that k(x)
is not purely inseparable over k(f(x)), a contradiction. �

Example 3.2. It is clear that every closed immersion is radicial. For a more interesting
example, consider a scheme X over Fp, and let f : X → X be the absolute Frobenius
morphism. It is clear that f is a surjective, radicial morphism (use description iii) in the
above proposition).

Remark 3.3. It follows from either of the descriptions in Proposition 3.1 that the class
of radicial morphisms is closed under composition and base-change. Of course, the same
holds for radicial surjective morphisms.

Remark 3.4. If f : X → Y is a morphism of schemes, it is a consequence of the de-
scription iii) in Proposition 3.1 that f is radicial of and only if fred : Xred → Yred has this
property.

Remark 3.5. The notion of radicial morphism is local on the target: f : X → Y is radicial
if and only if there is an open cover Y =

⋃
i Vi such that each f−1(Vi) → Vi is radicial

(one can use for this any of the descriptions in Proposition 3.1).

Remark 3.6. A morphism f : X → Y of schemes over a field k is radicial and surjec-
tive if and only if for every algebraically closed field K containing k, the induced map
fK : X(K) → Y (K) is bijective. Indeed, Proposition 3.1 shows that f is radicial if and
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only if all fK are injective. Assuming that this is true, it is easy to see that if all fK
are surjective, then f is surjective, and the converse follows from the fact that for every
x ∈ X, the extension of residue fields k(f(x)) ↪→ k(x) is algebraic.

Example 3.7. If ϕ : R→ S is a morphism of rings of characteristic p such that

i) The kernel of ϕ is contained in the nilradical of R.
ii) For every b ∈ S, there is m such that bp

m ∈ Im(ϕ),

then the induced morphism SpecS → SpecR is radicial and surjective. Indeed, if p is a
prime ideal of R, then there is a unique prime ideal q of S such that ϕ−1(q) = p, namely

q = {b ∈ S | bpm = ϕ(a) for some a ∈ p andm ≥ 1}.
Furthermore, for every u ∈ S/q, there is m ≥ 1 such that up

m
lies in the image of R/p,

hence R/p ↪→ S/q is purely inseparable.

Proposition 3.8. If f : X → Y is a morphism of schemes of finite type over a field k of
characteristic zero, then the following are equivalent:

i) f is radicial and surjective.
ii) X(k)→ Y (k) is bijective, where k is an algebraic closure of k.

iii) f is a piecewise isomorphism, that is, there is a disjoint cover Y = Y1 t . . . t Ym
by locally closed subsets, such that all induced morphisms f−1(Yi)red → (Yi)red are
isomorphisms.

Proof. The implication i)⇒ii) follows from Remark 3.6. Suppose now that f is a piecewise
isomorphism and Y =

⊔
i Yi is a disjoint cover as in iii). Given a morphism ϕ : Y ′ → Y ,

let g : X ×Y Y ′ → Y ′ be the morphism obtained by base-change from f . We get a locally
closed disjoint cover Y ′ =

⊔
i Y
′
i , where Y ′i = ϕ−1(Yi), such that each g−1(Y ′i )red → (Y ′i )red

is an isomorphism. Therefore f is radicial, and it is clear that f is surjective. Therefore
in order to finish the proof of the proposition it is enough to show that if f satisfies ii),
then f is a piecewise isomorphism.

Arguing by Noetherian induction, we may assume that the property holds for
f−1(Z) → Z, for every proper closed subset Z of Y . Therefore whenever it is conve-
nient, we may replace f by f−1(U) → U , where U is a nonempty open subset of Y . We
may put on both X and Y their reduced scheme structures, and therefore assume that
they are reduced. If Y1, . . . , Yr are the irreducible components of Y , we may replace Y by
Y1 r ∪i 6=1Yi, and therefore assume that Y is irreducible.

Since X(k)→ Y (k) is injective, we deduce that there is a unique irreducible compo-
nent of X that dominates Y . Therefore there is an open subset U in Y such that f−1(U)
does not meet the other irreducible components of X. After replacing Y by U , we may
assume that both X and Y are irreducible. Let d = deg(K(X)/K(Y )). It is enough to
show that d = 1, since in this case f is birational, hence there is an open subset U of X
such that f−1(U)→ U is an isomorphism.

Since we are in characteristic zero, f is generically smooth, that is, there are open
subsets V ⊆ X and W ⊆ Y such that f induces a smooth morphism g : V → W . It follows
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from [Har, Exercise II.3.7] that there is an open subset W ′ of W such that g−1(W ′)→ W ′

is finite. After restricting further to an open subset of W ′, we may assume that W ′ is affine,
and O(g−1(W ′)) is free of rank d over O(W ′). Since all fibers of g−1(W ′)×k k → W ′×k k
are reduced, it follows that each such fiber has d elements, so by assumption d = 1. This
completes the proof of the proposition.

�

4. Quotients of locally closed subschemes

Proposition 4.1. Let X be a scheme of finite type over k, and G a finite group acting
on X by algebraic automorphisms over k. We assume that X is covered by affine open
subsets preserved by the G-action, and let π : X → X/G be the quotient morphism. If W
is a locally closed subscheme of X such that G induces an action on W , then the canonical
morphism W/G→ π(W ) is radicial and surjective.

Proof. We first need to show that W/G exists, and that we have an induced morphism
W/G→ X/G. If W is the closure of W (with the image scheme structure), then W is an
open subscheme of W , which is a closed subscheme of X. Furthermore, G has an induced
action on W . It follows that it is enough to consider separately the cases when W is an
open or a closed subscheme of X. If W is an open subscheme, then the assertion is clear:
π(W ) is open in X/G, and we have seen that W = π−1(π(W )) → π(W ) is the quotient
of W by the G-action.

Suppose now that W is a closed subscheme of X, and consider π(W ) (with the image
scheme structure). Note first that since π(W ) can be covered by affine open subsets, and
π is finite, it follows that W is covered by affine open subsets that are preserved by the
G-action. In particular, W/G exists, and the G-invariant morphism W → X → X/G
induces a morphism ϕ : W/G → X/G. It is clear that the image of this morphism is
π(W ). In order to show that ϕ is radicial, we may assume that X = SpecA is affine
(simply consider an affine cover of X by affine open subsets preserved by the G-action).
Let I denote the ideal defining W . If B is the image of AG → (A/I)G, then it is enough to
prove that Spec(A/I)G → SpecB is radicial. In light of Example 3.7, this is a consequence
of the more precise statement in the lemma below. �

Lemma 4.2. Let A be a finitely generated k-algebra, and let G be a finite group acting on
A by k-algebra automorphisms. Suppose that I ⊆ A is an ideal preserved by the G-action.
If pn is the largest power of p = char(k) that divides |G| (we make the convention that
pn = 1 if char(k) = 0), then for every b ∈ (A/I)G, we have bp

n ∈ Im(AG → (A/I)G).

Proof. The argument that follows is inspired from [KM, p.221]. We write it assuming
p > 0, and leave for the reader to do the translation when char(k) = 0.

Let u ∈ A be such that b = u ∈ A/I is G-invariant. Since gu − u ∈ I for every
g ∈ G, we have the following congruence in the polynomial ring A[x]:∏

g∈G

(1 + (gu)x) ≡ (1 + ux)|G|mod IA[x].
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The polynomial on the left-hand side has coefficients in AG, hence by considering the
coefficient of xp

n
on the right-hand side, we conclude that

(|G|
pn

)
up

n
is congruent mod I to

an element in AG. Since
(|G|
pn

)
is invertible in k2, it follows that up

n
lies in the image of

RG. �

Remark 4.3. It follows from the proof of Proposition 4.1 and Lemma 4.2 that if char(k)
does not divide |G|, then under the assumptions in Proposition 4.1, the morphism W/G→
π(W ) is an isomorphism. In particular, this is the case for every G if char(k) = 0.
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