
APPENDIX 2. BASICS OF p-ADIC FIELDS

We collect in this appendix some basic facts about p-adic fields that are used in
Lecture 9. In the first section we review the main properties of p-adic fields, in the second
section we describe the unramified extensions of Qp, while in the third section we construct
the field Cp, the smallest complete algebraically closed extension of Qp. In §4 section we
discuss convergent power series over p-adic fields, and in the last section we give some
examples. The presentation in §2-§4 follows [Kob].

1. Finite extensions of Qp

We assume that the reader has some familiarity with I-adic topologies and comple-
tions, for which we refer to [Mat]. Recall that if (R,m) is a DVR with fraction field K,
then there is a unique topology on K that is invariant under translations, and such that
a basis of open neighborhoods of 0 is given by {mi | i ≥ 1}. This can be described as the
topology corresponding to a metric on K, as follows. Associated to R there is a discrete
valuation v on K, such that for every nonzero u ∈ R, we have v(u) = max{i | u 6∈ mi}. If
0 < α < 1, then by putting |u| = αv(u) for every nonzero u ∈ K, and |0| = 0, one gets a
non-Archimedean absolute value on K. This means that | · | has the following properties:

i) |u| ≥ 0, with equality if and only if u = 0.
ii) |u+ v| ≤ max{|u|, |v|} for every u, v ∈ K1.

iii) |uv| = |u| · |v| for every u, v ∈ K.

In this case, by taking d(x, y) = |x − y| we get a non-Archimedean2 metric on K such
that the corresponding topology is the unique topology mentioned above. Note that the
topology is independent of the choice of α. It is clear that addition, multiplication, and
taking the inverse of a nonzero element are all continuous.

The completion of R is defined algebraically as R̂ = lim←−
i

R/mi. It is a general fact that

R is local and Noetherian, and the canonical morphism R→ R̂ is injective. Furthermore,

the maximal ideal in R̂ is m · R, and for all i ≥ 1 we have R/mi ' R̂/miR̂. This implies

that dim(R̂) = dim(R) = 1. Since the maximal ideal in R̂ is principal (being generated

by a generator π of m), it is easy to see that R̂ is a DVR. Furthermore, we have K̂ :=

Frac(R̂) = R̂[1/π] = K ⊗R R̂. In particular, we have a valuation and a non-Archimedean

absolute value on K̂ that extend the corresponding ones on K. In fact, K̂ is the completion

of K with respect to the topology defined by |·|, and the absolute value on K̂ is the unique
one extending the absolute value on K.

1A useful observation is that we automatically get that this is an equality if |u| 6= |v|.
2This means that we have the strong triangle inequality d(x, y) ≤ d(x, z) + d(y, z) for all x, y, and z.

1



2

Suppose now that p is a fixed prime integer. We apply the above discussion to K =
Q, where R = Z(pZ) is the localization of Z at the maximal ideal pZ. The corresponding
topology on Q is the p-adic topology, and the corresponding absolute value, with α = 1

p
is

denoted by | · |p. The field K̂ is the field of p-adic rational numbers Qp, and R̂ is the ring
of p-adic integers Zp. The corresponding valuation and absolute value on Qp are denoted
by ordp, and respectively, | · |p.

We now recall Hensel’s Lemma, one of the basic results about complete local rings.
For a proof, see [Mat, Theorem 8.3]. Let (A,m, k) be a complete local ring. For a polyno-
mial g ∈ A[x], we denote by g its image in k[x].

Proposition 1.1. With the above notation, suppose that f ∈ A[x] is a monic polynomial.
If u, v ∈ k[x] are relatively prime monic polynomials such that f = uv, then there are
monic polynomials g, h ∈ A[x] such that

i) f = gh
ii) g = u and h = v.

A consequence of the above proposition is that if (keeping the notation) B is a finite
A-algebra such that B/mB splits as the product of two (nonzero) rings, then the same
holds for B. Indeed, the hypothesis gives the existence of an idempotent u ∈ B such that
u 6= 0, 1. Applying Hensel’s Lemma for the decomposition x2 − x = (x− u)(x− (1− u))
in k[x], we get an idempotent in B different from 0 and 1. In particular, we see that if B
is a domain, then the zero-dimensional ring B/mB is local, hence B is local, too.

A p-adic field is a finite field extension of Qp. If K is such a field, we denote by
OK the ring of integers in K (that is, the integral closure of Zp in K). It is easy to see
that since every element u ∈ K is algebraic over Qp, there is a ∈ Zp such that au ∈ OK .
Therefore Qp ⊗Zp OK = K and K is the fraction field of OK .

Since Zp is a DVR, it is well-known that OK is a finite Zp-algebra (see [Lang,
Precise]). Therefore the discussion after Proposition 1.1 implies that OK is a local ring
(and the inclusion Zp ↪→ OK is local, since OK is finite over Zp). Furthermore, since
dim(OK) = dim(Zp) = 1, and OK is clearly normal, we conclude that OK is again a
DVR.

If vK is the discrete valuation of K corresponding to OK , then eK := vK(p) is the
ramification index of K over Qp. We say that K is unramified over Qp if eK = 1. It is
clear that for every u ∈ Qp, we have vK(u) = eK · ordp(u). The p-adic absolute value on

K is defined by |u|p =
(

1
p

)vK(u)/eK
. Note that for u ∈ Qp, this agrees with the definition

we gave before. We have OK = {u ∈ K, |u|p ≤ 1}, and the maximal ideal in OK is
mK = {u ∈ K, |u| < 1}.

Since every ideal in Zp is generated by some pm, and OK is clearly torsion-free, it
follows that OK is flat over Zp. We deduce that OK is a free module over Zp, and its rank
is clearly equal to n = [K : Qp]. Let πK denote a generator of the maximal ideal mK . The
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quotient OK/pOK is free of rank n over Fp; on the other hand, it has a filtration

(0) ⊂ meK−1
K /meK

K ⊂ . . . ⊂ mK/m
eK
K ⊂ OK/m

eK
K ,

with each successive quotient isomorphic toOK/mK . We deduce that if f = [OK/mK : Fp],
then n = ef .

Exercise 1.2. Let K be a p-adic field.

i) Show that a basis of open neighborhoods of 0 in OK is given by {pmOK | m ≥ 1}.
ii) Deduce that if we choose an isomorphism of Zp-modules OK ' Znp , the topology

on OK corresponds to the product topology on Znp .
iii) Deduce that OK is complete (and therefore so is K).

Exercise 1.3. Let K ↪→ L be two finite extensions of Qp.

ii) Show that if eL/K is defined by πKOL = (π
eL/K

L ), and fL/K = [OL/mL : OK/mK ],
then eL = eK · eL/K and fL = fK · fL/K. Deduce that [L : K] = eL/KfL/K.

i) Show that the two definitions of | · |p on K and L are compatible.

We say that L/K is unramified if eL/K = 1, and that it is totally ramified if eL/K =
[L : K].

Exercise 1.4. Let K be a finite Galois extension of Qp. Show that if σ ∈ G(K/Qp), then
|σ(u)|p = |u|p for every u ∈ K. Deduce that for every p-adic field K and every u ∈ K, we
have |u|p = NK/Qp(u)1/n, where n = [K : Qp].

Suppose now that (K, | · |) is an arbitrary field endowed with a non-Archimedean
absolute value, and we consider on K the corresponding metric space structure. The
following exercise gives some special features of the non-Archimedean setting.

Exercise 1.5. With K as above, suppose that (an)n≥1 is a sequence of elements of K.

i) Show that (an) is Cauchy if and only if limn→∞(an − an+1) = 0.
ii) Show that if K is complete, then the series

∑
n≥1 an is convergent if and only if

limn→∞ an = 0.
iii) Show that if the series

∑
n≥1 an is convergent, then for every permutation σ of

Z>0, we have
∑

n≥1 aσ(n) =
∑

n≥1 an.

2. Unramified extensions of Qp and Teichmüller lifts

Our main goal in this section is to describe the unramified extensions of Qp, and
the morphisms between them. We will also take this opportunity to discuss Teichmüller
lifts of elements in a finite field. In order to state the results, it is convenient to fix an
algebraic closure Qp of Qp. The following is the main result of this section.

Theorem 2.1. The unramified extensions of Qp in Qp are described as follows.
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i) For every n, there is a unique unramified extension of Qp in Qp of degree n,

denoted by Q
(n)
p . This can be obtained by attaching to Qp a primitive root of 1 of

order pn − 1.

ii) If K ⊆ Qp is a finite extension of Qp and f = fK, then Q
(f)
p ⊆ K, and this

extension is totally ramified.

ii) Q
(n)
p is a Galois extension of Qp, and we have an isomorphism of Galois groups

G(Q
(n)
p /Qp)→ G(Fpn/Fp), that associates to an automorphism of Q

(n)
p the induced

automorphism of the residue field.

Proof. We begin by showing that for every n ≥ 1, there is an unramified extension of Qp

of degree n. Let u ∈ F∗pn be a multiplicative generator. Since Fpn = Fp(u), it follows that

the minimal polynomial P ∈ Fp[x] of u over Fp has degree [Fpn : Fp] = n. Let P̃ ∈ Zp[x]

be a monic polynomial lifting P . Since P is irreducible, it follows that P̃ is irreducible.

Let w ∈ Qp be a root of P̃ , and put L = Qp(w). We have [L : Qp] = deg(P̃ ) = n, and

since P̃ is monic, we see that w ∈ OL. Let mL denote the maximal ideal in OL. The image
w ∈ OL/mL of w satisfies P (w) = 0, hence w is a conjugate of u, so that fL ≥ n. Since
eLfL = n, we conclude that fL = n, and the extension L/Qp is unramified. We thus have
unramified extensions of Qp of arbitrary degree.

Let us consider an arbitrary extension K of Qp of degree d, contained in Qp. We
put e = eK and f = fK . Let α be a multiplicative generator of (OK/mK)∗. We claim that

there is a lifting α̃ ∈ OK of α such that α̃p
f−1 = 1. We can write xp

f−1− 1 = (x−α)G(x)
for a monic polynomial G ∈ Fpf [x]. Since G(α) 6= 0, it follows from Proposition 1.1 that

we can write xp
f−1−1 = (x−α̃)G̃(x) for some G̃ ∈ OK [x], and some lift α̃ ∈ OK of α. This

proves our claim. Note that α̃ is a primitive root of 1 of order pf − 1: if α̃i = 1 for some
0 < i < pf − 1, then αi = 1, a contradiction. It is clear that fQp(α̃) ≥ [Fp(α) : Fp] = f ,
and since the reverse inequality follows from Qp(α̃) ⊆ K, we have fQp(α̃) = f and the
extension K/Qp(α̃) is totally ramified.

Suppose now that K is unramified over Qp, hence e = 1. The above shows that
K = Qp(α). Therefore every unramified degree n extension of Qp is obtained by adjoining
to Qp a primitive root α̃ of 1 of order pn−1. Since such an extension is clearly independent
of the choice of the primitive root, we get the assertion in i). We note that from the
construction we also get that the image α of α̃ in the residue field of K is again a primitive
root of 1 of order pn − 1.

Returning to the case of an arbitrary K as above, we see that Qp(α̃) = Q
(f)
p , hence

the assertion in ii).

For every σ ∈ G(Qp/Qp), note that σ(Q
(n)
p ) is an unramified extension of Qp of

degree n, hence by the uniqueness statement in i), it is equal to Q
(n)
p . This shows that

the extension Q
(n)
p /Qp is Galois (it is separable since char(Qp) = 0). It is clear that an

automorphism σ of L = Q
(n)
p induces an automorphism of OL, hence an automorphism

σ of the residue field OL/mL. We thus get a group homomorphism G := G(Q
(n)
p /Qp) →

G(Fpn/Fp). Since both groups have n elements, it is enough to show that this is an
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injective morphism. We have seen that Q
(n)
p = Qp(α̃), where α̃ ∈ Qp is a primitive root of

1 of order pn−1, and the image α of α̃ in the residue field is again a primitive root of 1 of
order pn − 1. Every σ in G satisfies σ(α̃) = α̃i for some i. If σ = id, then α = σ(α) = αi,
hence α̃ = α̃i, and we see that σ = id. This completes the proof of iii), and thus the proof
of the theorem. �

Corollary 2.2. We have Q
(m)
p ⊆ Q

(n)
p if and only if m divides n.

Proof. If Q
(m)
p ⊆ Q

(n)
p , then m = [Q

(m)
p : Q] divides n = [Q

(n)
p : Q]. Conversely, suppose

that m|n, so that r = pn−1
pm−1 is an integer. If β ∈ Qp is a primitive root of 1 of order pn−1,

then βr is a primitive root of 1 of order pm − 1, and Q
(m)
p = Qp(β

r) ⊆ Qp(β) = Q
(n)
p . �

We end this section by discussing the Teichmüller lift of an element in a finite field.

For every n ≥ 1, let Z
(n)
p denote the ring of integers of Q

(n)
p .

Proposition 2.3. For every u ∈ Fpn, there is a unique ũ ∈ Z
(n)
p that is a lift of u, and

such that ũp
n

= u.

The element ũ in the above proposition is the Teichmüller lift of u. We start with
a lemma.

Lemma 2.4. If I is an ideal in a commutative ring A, and if u, v ∈ A are such that u ≡ v
(mod pI), then up

i ≡ vp
i

(mod pi+1I) for every i ≥ 1.

Proof. Arguing by induction on i, we see that it is enough to prove the case i = 1. Write
u = v + a, where a ∈ pI, hence

up − vp =

p∑
j=1

(
p

j

)
vp−jaj.

Since aj ∈ p2I2 for every j ≥ 2, and pa ∈ p2I, we get the assertion in the lemma. �

Proof of Proposition 2.3. For the existence part, it is clear that if u = 0, then we may
take ũ = 0. Suppose now that u is nonzero. We have seen in the proof of Theorem 2.1

that Q
(n)
p = Qp(α̃), where α̃ ∈ Qp is a primitive root of 1 of order pn − 1, and its image

α ∈ Fpn is again a primitive root of 1 of order pn − 1. Therefore α is a multiplicative

generator of F∗pn , hence there is m such that u = αm. Since α̃ ∈ Z
(n)
p , if we take ũ = α̃m,

this has the required properties.

In order to prove uniqueness, suppose that ũ, ṽ ∈ Z
(n)
p both satisfy the conditions

in the proposition. In particular, we have ũ ≡ ṽ (mod pZ
(n)
p ), and the lemma implies

ũp
ni ≡ ṽp

ni
(mod pni+1Z

(n)
p ) for every i ≥ 1. Since ũp

ni
= ũ and ṽp

ni
= ṽ, we conclude that

ũ− ṽ ∈
⋂
i≥1 p

niZ
(e)
p , hence ũ = ṽ. �

Corollary 2.5. Every element in Z
(n)
p has a unique expression as the sum of a series∑

i≥0 aip
i, where ap

n

i = ai for every i.
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Proof. Given u ∈ Z
(n)
p , let a0 be the Teichmüller lift of the image of u in Fpn , so that

u − a0 = pu1, for some u1 ∈ Z
(n)
p . Repeating this construction for u1 etc., we see that

we can write u as a sum as in the corollary. For uniqueness, note that if we have two
expressions as in the statement

u =
∑
i≥0

aip
i =

∑
i≥0

bip
i,

then a0 = b0 by Proposition 2.3, and then
∑

i≥1 aip
i−1 =

∑
i≥1 bip

i−1, and we repeat. �

Remark 2.6. Note that if m divides n, then Fpm ⊆ Fpn and Q
(m)
p ⊆ Q

(n)
p . It follows from

the uniqueness part in Proposition 2.3 that the Teichmüller lift ũ of an element u ∈ Fpm

is equal to the Techmüller lift of u when considered as an element in Fpn .

Remark 2.7. If ũ and ṽ are the Teichmüller lifts of u, v ∈ Fpn , respectively, then ũṽ
is the Teichmüller lift of uv. Indeed, it is clear that ũṽ satisfies both conditions in the
definition of a Teichmüller lift.

3. The field Cp

In this section we follow closely the presentation in [Kob, Chapter III.3]. Let Qp

be an algebraic closure of Qp. We can write Qp =
⋃
K K, where K varies over the finite

extensions of Qp. By Exercise 1.3 the absolute values on the various K are compatible,
hence we get a non-Archimedean absolute value | · |p on Qp, that restricts on each K to
the one we have defined. As in §1, this gives a non-Archimedean metric on Qp, and each
finite extension K of Qp is a metric subspace of Qp. The ring of integers OQp

of Qp is

the union
⋃
K OK , hence it is the set of elements of Qp that are integral over Zp. We may

also describe this as {u ∈ Qp, |u|p ≤ 1}.

Exercise 3.1. Show that OQp
is a local ring, with maximal ideal m = {u ∈ Qp, |u|p < 1}.

Prove that there is an isomorphism OQp
/m ' Fp.

Proposition 3.2. The field Qp, with the metric described above, is not complete.

Proof. We need to construct a Cauchy non-convergent sequence in Qp. We start by choos-

ing for every i ≥ 0 a primitive root bi ∈ Qp of 1 of order p2
i − 1. Let Ki = Qp(bi). It

follows from Theorem 2.1 that [Ki : Qp] = 2i. If i < j, then p2
i − 1 divides p2

j − 1. This
implies that bi is a power of bj, hence we have Ki ⊆ Kj.

We take ai = b0p
N0 + b1p

N1 + . . . bip
Ni , where N0 < N1 < . . . < Ni < . . . will be

chosen later. Note that since |bi|p = 1 for every i, we have |ai − ai+1|p = 1
pNi

, hence the

sequence (ai)i is Cauchy by Exercise 1.5.

Suppose that N0, . . . , Ni have been constructed, and ai is defined as above. It is clear
that we have Qp(ai) ⊆ Ki. We claim that in fact this is an equality. Indeed, otherwise
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there is σ : Ki → Qp that fixes Qp(ai), but such that σ(bi) 6= bi. We have

i∑
j=0

σ(bj)p
Nj = σ(ai) = ai =

i∑
j=0

bjp
Nj ,

and the uniqueness part in Corollary 2.5 implies that σ(bi) = bi, a contradiction.

Assuming Ni chosen, we claim that there is Ni+1 > Ni such that ai does not satisfy
any congruence

(1) αna
n
i + αn−1a

n−1
i + . . .+ α0 ≡ 0 (mod pNi+1)

for any n < d := [Qp(ai) : Qp] = 2i, with αj ∈ Zp, not all of them divisible by p. Indeed,
for every N ≥ Ni, consider the set AN of all (α0, . . . , αd−1) ∈ Z/pN+1Z with the property

that
∑d−1

j=0 αja
j
i = 0 in Z/pN+1Z, and some αj does not lie in pZ/pN+1Z. Note that the

projection Z/pN+2Z → Z/pN+1Z induces a map AN+1 → AN . If all AN are nonempty,
then lim←−

N

AN is nonempty. Indeed, we may choose an element cNi
∈
⋂
N Im(AN → ANi

),

then an element cNi+1 ∈
⋂
N Im(AN → ANi+1) that lies over cNi

, etc. Since an element in
lim←−
N

AN determines a nontrivial equation of degree < d with coefficients in Qp, we get a

contradiction.

We choose the Ni inductively, such that the above condition is satisfied, and we
claim that in this case the sequence (ai)i is not convergent to an element of Qp. Indeed, if
the sequence converges to a ∈ Qp, then let us consider a polynomial f = αnx

n+ . . .+α0 ∈
Zp[x], with not all αi ∈ pZp, such that f(a) = 0. Since a ≡ a` (mod pNi+1Zp) for ` � 0,
and ai ≡ a` (mod pNi+1Zp) for ` ≥ i, it follows that a ≡ ai (mod pNi+1Zp). We get a
contradiction if we take i such that 2i > n. This completes the proof of the proposition. �

Since Qp is a metric space, it is a general result that there is a completion of Qp

that is denoted by Cp. This means that we can embed Qp as a dense metric subspace in
Cp, which is complete. The field operations extend (uniquely) by continuity to Cp, so this
is a field. Furthermore, the absolute value on Qp extends uniquely to a non-Archimedean
absolute value on Cp, still denoted by | · |p, that induces the metric, hence the topology of
Cp. The miracle is that we do not have to repeat the process of taking algebraic closure
and completion.

Theorem 3.3. The field Cp is algebraically closed.

Proof. Let f = a0x
n+a1x

n−1 + . . .+an be a polynomial in Cp[x], with a0 6= 0. We need to
show that f has a root in Cp. Since Qp is dense in Cp, we can find am,i ∈ Qp with am,0 6= 0
and |am,i − ai|p < εm < 1, where (εm) is a strictly decreasing sequence, converging to 0.
Let fm =

∑n
i=0 am,ix

n−i ∈ Qp[x]. Since Qp is algebraically closed, we can factor each fm
as

fm = am,0(x− αm,1) · · · (x− αm,n),

for suitable αm,i ∈ Qp.
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We first show that there is C ≥ 1 such that |αm,i|p ≤ C for all i and m. Indeed, let
us fix m, and suppose after reordering the (αm,j)j that

αm,1 = . . . = αm,r > αm,j for all j > r.

If sr is the rth elementary symmetric function of the αm,j, then

|αm,1|r = |sr|p = |am,r/am,0|p.

We conclude that

αm,i ≤ max
1≤j≤n

|am,j|1/jp

|am,0|1/jp

,

and since each am,j is close to aj, we see that we can find C as desired.

We now show that we can reorder (αm,i)i for all m, such that |αm,1−αm+1,1| ≤ C ′ε
1/n
m

for all m, where C ′ is a constant independent of m. Note that this implies by Exercise 1.5
that the sequence (αm,1)m is Cauchy. Let us suppose that we did this up to m. We have

fm+1(αm,1) = am,0

n∏
j=1

(αm,1 − αm+1,j),

and on the other hand

fm+1(αm,1) = fm+1(αm,1)− fm(αm,1) =
n∑
i=0

(am+1,i − am,i)αn−im,1 .

Therefore we get

|am,0|p ·
n∏
j=1

|αm,1 − αm+1,j|p ≤ εmC
n−1,

and after reordering the αm+1,j we may assume that

|αm,1 − αm+1,1|p ≤ C ′ε1/nm ,

where C ′ is a constant that only depends on C, n, and minm |am,0|p > 0.

Therefore we may assume that (αm,1)m is a Cauchy sequence, hence is convergent
to some α ∈ Cp. Since fm(αm,1) = 0 for every m, and limm→∞ am,i = ai for every i, we
have f(α) = 0. This completes the proof. �

Remark 3.4. Note that Cp is obtained from Q in a similar way that with how C is
obtained from Q, with the respect to the usual Archimedean absolute value on Q (however,
in the case of Cp we had to complete twice).

Remark 3.5. Note that the algebraic closure and the completion are unique up to a
canonical isomorphism. Therefore the field Cp is unique up to a canonical isomorphism
(of fields equipped with an absolute value).

The field Cp therefore is algebraically closed and complete with respect to the non-
Archimedean absolute value | · |p. This provides the right setting for doing p-adic analysis.
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4. Convergent power series over complete non-Archimedean fields

In this section we review some basic facts about convergent power series and analytic
functions in the non-Archimedean setting. The principle is that the familiar results over
R or C carry over to this framework, sometimes in a slightly improved version.

Let (K, | · |) be a field endowed with a nontrivial3 non-Archimedean absolute value,
which is complete with respect to the induced metric space structure. For applications we
will be interested in the case when K = Cp, or K is a p-adic field. For every point a ∈ K
and every r > 0, we put

Dr(a) = {u ∈ K, |u− a| ≤ r}, D◦r(a) = {u ∈ K, |u− a| < r}.
It is clear that D◦r(a) is an open neighborhood of a. A special feature of the non-
Archimedean setting is that Dr(a) is both open and closed4.

Proposition 4.1. Given a formal power series f =
∑

n≥0 ant
n ∈ K[[t]] be a over K, let

r(f) := 1/limsupn|an|1/n5, and consider u ∈ K.

i) If |u| < r(f), then
∑

n≥0 anu
n is convergent.

ii) If |u| > r(f), then
∑

n≥0 anu
n is divergent.

iii) If v ∈ K is such that |u| = |v| = r(f), then
∑

n≥0 anu
n is convergent if and only

if
∑

n≥0 anv
n is.

The radius of convergence of f is r(f).

Proof. If |u| < r(f), then infm supn≥m |an|1/n < 1
|u| , hence there is n0 and ρ < 1 such that

|an|1/n < ρ
|u| for all n ≥ n0. Therefore |anun| < ρn for n ≥ n0, hence limn→∞ anu

n = 0,

and we deduce from Exercise 1.5 that
∑

n≥0 anu
n is convergent.

Suppose now that |u| > r(f), hence infm supn≥m |an|1/n > 1
|u| . It follows that we

can find ρ > 1
|u| such that for every m, there is n ≥ m with |anun| > (ρ|u|)n. Therefore∑

n≥0 anu
n is divergent. The assertion in iii) follows from the fact that if |u| = r(f), then∑

n≥0 anu
n is convergent if and only if limn→∞ |an|r(f)n = 0. �

If U ⊆ K is open, a function ϕ : U → K is analytic if for every a ∈ U , there is r > 0
with D◦r(a) ⊆ U , and a formal power series f ∈ K[[t]] with radius of convergence r(f) ≥ r
such that ϕ(u) = f(u− a) for every u ∈ D◦r(a).

Lemma 4.2. If f =
∑

n≥0 ant
n ∈ K[[t]] and |b| < r(f), then there is g ∈ K[[t]] with

r(g) ≥ r(f) such that f(u) = g(u− b) for every u ∈ K with |u| < r(f).

3An absolute value is trivial if it only takes the values 0 and 1.
4This shows that K is totally disconnected, that is, every point has a basis of neighborhoods that are

both open and closed. This is a fact of life in the non-Archimedean setting, and the need to correct this
led to the theory of rigid analytic spaces, see [Con].

5We make the convention that if lim supn |an|1/n is zero or infinite, then r(f) = ∞ or r(f) = 0,
respectively.
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Proof. For every u ∈ K we have |u− b| < r(f) if and only if |u| < r(f), and in this case

f(u) =
∑
n≥0

an((u−b)+b)n =
∑
n≥0

an

n∑
i=0

(
n

i

)
(u−b)ibn−i =

∑
i≥0

(∑
j≥0

(
i+ j

i

)
ai+jb

j

)
(u−b)i.

In particular, βi :=
∑

j≥0
(
i+j
i

)
ai+jb

j is well-defined, the series g =
∑

i≥0 βit
i has radius of

convergence ≥ r(f), and f(u) = g(u− b) whenever |u− b| < r(f). �

Corollary 4.3. If f ∈ K[[t]] has radius of convergence r(f) > 0, then the function

{u ∈ K, |u| < r(f)} 3 u→ f(u) ∈ K

is an analytic function.

Analytic functions on open subsets of K satisfy properties entirely analogous to the
ones of real or complex analytic functions. We list some of these properties, but leave as
an exercise for the reader the task of checking that the familiar proofs also work in the
non-Archimedean setting.

• Every analytic function is continuous. This is a consequence of the fact that for every
f =

∑
n≥0 ant

n ∈ K[[t]], if we put fm =
∑m

n=0 ant
n, then the convergence of fm(u) to f(u)

is uniform on every subset DR(0), with R < r(f). Indeed, we have

|f(u)− fm(u)| ≤ sup
n≥m
|an|Rn → 0 when m→∞.

• The set of analytic functions on an open subset U ⊆ K is a ring. Furthermore, if ϕ is
analytic and nonzero at every point of U , then 1/ϕ is analytic.

More precisely, suppose that ϕ and ψ are analytic on U , and they are given on
D◦r(a) ⊆ U as ϕ(u) = f(u− a) and ψ(u) = g(u− a), for some f, g ∈ K[[t]] r(f), r(g) ≥ r.
In this case the radii of convergence of f + g and fg are both ≥ r, and ϕ(u) + ψ(u) =
(f+g)(u−a) and ϕ(u)ψ(u) = fg(u−a) for u ∈ D◦r(a). Furthermore, if ϕ(u) 6= 0 for every
u ∈ D◦r(a), then in particular f(0) 6= 0, hence f is invertible. The radius of convergence
of f−1 is ≥ r, and 1/ϕ(u) = f−1(u− a) for every u ∈ D◦r(a).

• If ϕ : U → V and ψ : V → K are analytic functions, then the composition ψ ◦ ϕ is
analytic. More precisely, given a ∈ U , suppose that D◦r(a) ⊆ U and D◦r′(ϕ(a)) ⊆ V are
such that ϕ(u) = f(u− a) and ψ(v) = g(v − ϕ(a)) for suitable f, g ∈ K[[t]], such that the
radii of convergence of f and g are ≥ r, r′, respectively. Note that f(0) = ϕ(a), and let

f̃ = f −f(0), and h = g ◦ f̃ ∈ K[[t]]. After possibly replacing r by a smaller value, we may
assume that ϕ(D◦r(a)) ⊆ D◦r′(ϕ(a)). In this case the radius of convergence of h is ≥ r, and
we have ϕ(ψ(u)) = h(u− a) for u ∈ D◦r(a).

• If f, g ∈ K[[t]] have radii of convergence ≥ R > 0, and f(u) = g(u) for every u with
0 < |u| < R, then f = g

One can differentiate analytic functions, and the result is again analytic. One can
also consider, more generally, analytic functions of several variables. However, while such
functions show up in Lecture 9, we do not need to develop any theory in this setting.
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We end this section with the following result that is needed in Lecture 9. For simplic-
ity, we assume that |K∗| is dense in R 0. For example, this always holds if K is algebraically
closed. Indeed, if u ∈ K is such that |u| > 1, then |u|q ∈ |K∗| for every q ∈ Q, hence |K∗|
is dense in R>0.

Proposition 4.4. Suppose that |K∗| is dense in R>0, and let R > 0 and f ∈ K[[t]] be
such that r(f) > R. In this case, there is a polynomial P ∈ K[t] and an invertible power
series g ∈ K[[t]] such that both g and g−1 are convergent on DR(0), and f = Pg.

Before giving the proof of the proposition, we introduce some notation. Let AK =
{u ∈ R, |u| ≤ 1} and mK = {u ∈ AK , |u| < 1}. It is clear that AK is a subring of K, mK

is an ideal in AK , and the quotient AK/mK is a field, that we denote by k. If f ∈ A[[t]],
we denote by f its image in k[[t]].

Let T denote the set of formal power series in K[[t]] that are convergent on D1(0).
If f =

∑
n≥0 ant

n, then f ∈ T if and only if limn→∞ an = 0. It follows that if we put
‖ f ‖:= maxn |an|, then this maximum is well-defined, and it is attained for only finitely
many n. Note that if f ∈ R[[t]] ∩ T , then f is a polynomial.

Exercise 4.5. Show that if f, g ∈ T , then ‖ f · g ‖=‖ f ‖ · ‖ g ‖.

Proof of Proposition 4.4. The assertion holds trivially if f = 0, hence from now on we
assume f 6= 0. Since |K∗| is dense in R>0, after possibly replacing R by a larger value, we
may assume that R ∈ |K∗|. We first note that if α ∈ D◦r(f)(0) is such that f(α) = 0, then

f = (t−α)f1 for some f1 ∈ K[[t]] with r(f1) ≥ r(f). Indeed, by Lemma 4.2 there is g ∈ K[[t]]
with r(g) ≥ r(f) such that f(u) = g(u − α) for |u| < r(f). Since f(α) = 0, it follows
that g = tg1 for some g1 ∈ K[[t]], and we clearly have r(g1) = r(g). Another application
of Lemma 4.2 gives f1 ∈ K[[t]] with r(f1) ≥ r(g1) ≥ r(f) such that g1(u) = f1(u + α)
whenever |u| < r(f). Therefore

f(u) = g(u− α) = (u− α)g1(u− α) = (u− α)f1(u)

for all u with |u| < r(f), hence f = (t− α)f1.

We now show that there are α1, . . . , αr ∈ DR(0) (possibly not distinct) such that

(2) f = (t− α1) · · · (t− αr)g
for some g ∈ K[[t]] with r(g) ≥ r(f), and such that g(α) 6= 0 for every α ∈ DR(0). If
λ ∈ K is such that |λ| = R, then after replacing f by f(λt), we may assume that R = 1.
Let us write f =

∑
n≥0 ant

n. By assumption, we have f ∈ T , and let N be the largest

n with |an| =‖ f ‖. After replacing f by a−1N f , we may assume that aN = 1. Therefore
f ∈ AK [[t]], and f is a monic polynomial of degree N . By what we have already proved, it
is enough to show that given any expression as in (2), we have r ≤ N . Since ‖ t−αi ‖= 1
for all i, it follows from Exercise 4.5 that ‖ g ‖= 1. In particular, we have g ∈ AK [[t]], and
if we take the image in k[[t]], we get f = g ·

∏r
i=1(t−αi). Since f is a polynomial of degree

N , we deduce that r ≤ N .

In order to complete the proof of the proposition, it is enough to show that if we
write f as in (2), with g not vanishing anywhere on DR(0), then g−1 converges on DR(0):
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indeed, we then take P =
∏r

i=1(t − αi). Since |K∗| is dense in R>0, there is R′ ∈ |K∗|
with R < R′ < r(f). Applying what we have already proved for g and DR′(0), we see that
there are only finitely many α ∈ DR′(0) with g(α) = 0. It follows that after replacing R′

by a smaller one, we may assume that g does not vanish on DR′(0), and in this case the
radius of convergence of g−1 is ≥ R′ > R. This completes the proof of the proposition. �

5. Examples of analytic functions

In this section we discuss the p-adic version of some familiar complex analytic func-
tions Let us start with the exponential function. In this section we assume that K = Cp.

Consider f =
∑

n≥0
tn

n!
∈ Cp[[t]], and let us determine the radius of convergence

of f . Note that unlike in the complex case, the large denominators make the radius of
convergence small. For every n we have

ordp(n!) =
∑
i≥1

bn/pic ≤
∑
i≥1

n

pi
=

n

p− 1
,

hence (|1/n!|p)1/n ≤
(

1
p

)−1/(p−1)
. On the other hand, if n = pm, then

ordp(n!) = pm−1 + . . .+ p+ 1 =
pm − 1

p− 1
,

hence ordp(p
m!)/pm converges to 1

p−1 . We thus conclude that limsupn(|1/n!|p)1/n =
(

1
p

)−1/(p−1)
,

hence by Proposition 4.1 the radius of convergence of f is
(

1
p

)1/(p−1)
< 1. This implies

that the p-adic exponential function expp given by expp(u) = f(u) is not defined, for
example, on all Zp.

Let us consider also the p-adic logarithm function logp(1 + u) = g(u), where g(t) =∑
n≥1(−1)n−1 t

n

n
. We now are in better shape: if ordp(n) = i, then n ≥ pi, hence i

n
≤ log(n)

n·log(p) ,

which converges to zero when n goes to infinity. It then follows from Proposition 4.1 that
the radius of convergence of g is 1, hence logp(1 + u) is defined in D◦1(0), precisely as in
the complex case.

We now consider the p-adic binomial series. Let us recall first the formula for the
binomial series in the case of complex functions. If a ∈ C, then we may consider the
analytic function ϕ(u) = (1 + u)a. More precisely, we have ϕ(u) = exp(a · log(1 + u)),
which is defined and analytic for |u| < 1. The Taylor expansion at 0 is given by

ϕ(u) =
∑
m≥0

ϕ(m)(0)

m!
um.

Since we have ϕ′(u) = a(1+u)a−1, one sees immediately by induction on m that ϕ(m)(0) =
a(a− 1) · · · (a−m+ 1).
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We will now use the same formal power series in the p-adic setting, by allowing the
exponent to lie in Cp. More precisely, for a ∈ Cp, consider the formal power series

Ba,p(y) =
∑
m≥0

a(a− 1) · · · (a−m+ 1)

m!
ym ∈ Cp[[y]].

For obvious reasons, we also write (1 + y)a for Ba,p(y), and (1 + u)a for Ba,p(u), when
u ∈ Cp is such that |u| is smaller than the radius of convergence of Ba,p. Let us first
discuss the radius of convergence of Ba,p.

Lemma 5.1. Let a ∈ Cp, and denote by R the radius of convergence of Ba,p.

i) If |a|p > 1, then R = 1
|a|p

(
1
p

)1/(p−1)
.

ii) If |a|p ≤ 1, then R ≥
(

1
p

)1/(p−1)
.

iii) If a ∈ Zp, then R ≥ 1.

Proof. Suppose first that |a|p > 1. In this case |a− i|p = |a|p for every i ∈ Z. Therefore(
|a(a− 1) · · · (a−m+ 1)|p

|m!|p

)1/m

=
|a|p
|m!|1/mp

,

and the computation that we have done for expp shows that in this case the radius of

convergence of Ba,p(x) is 1
|a|p

(
1
p

)1/(p−1)
.

If |a|p ≤ 1, then |a − i|p ≤ 1 for every i ∈ Z, and we deduce from Proposition 4.1

and the computation in the case of the exponential function that R ≥
(

1
p

)1/(p−1)
. For

the assertion in iii), it is enough to show that if a ∈ Zp, then a(a−1)···(a−m+1)
m!

∈ Zp. This
is clear when a ∈ Z, and the general case follows since Z is dense in Zp (recall that Zp
consists of those u ∈ Qp with |u|p ≤ 1). �

Remark 5.2. It is clear from definition that if m is a nonnegative integer, then Bm,p(1+y)
is, as expected, the mth power of 1 + y.

The binomial series satisfies the following “expected” properties.

Proposition 5.3. If a, b ∈ Cp, then the following hold.

i) (1 + y)a · (1 + y)b = (1 + y)a+b.
ii) ((1 + y)a)b = (1 + y)ab.

Regarding ii), note that (1+y)a = 1+v(y) for some v ∈ yCp[[y]], hence (1+v(y))b is
well-defined in Cp[[y]]. We will prove the assertions in the proposition by reducing them to
the corresponding ones over C. However, it is more convenient to first introduce a formal
series over Q in two variables, by letting a become a formal variable. More precisely, we
consider

(1 + y)x :=
∑
m≥0

x(x− 1) · · · (x−m+ 1)

m!
ym ∈ Q[[x, y]].
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Proposition 5.4. We have the following equalities in Q[[x1, x2, y]].

i) (1 + y)x1 · (1 + y)x2 = (1 + y)x1+x2.
ii) ((1 + y)x1)x2 = (1 + y)x1x2.

Proof. Let us prove i). Let f and g denote the left-hand side (respectively, the right-
hand side) in i). In order to show that f = g, it is enough to show that they are equal
in C[[x1, x2, y]], hence it is enough to show that if u1, u2, v ∈ C are such that |v| < 1,
then f(u1, u2, v) = g(u1, u2, v) in C (note that under the condition on v, both sides are
well-defined. As we have seen,

(1 + v)u1 · (1 + v)u2 = exp(u1log(1 + v)) · exp(u2log(1 + v))

= exp((u1 + u2)log(1 + v)) = (1 + v)u1+u1 .

This completes the proof of i), and the proof of ii) is entirely similar. �

Proof of Proposition 5.3. If g ∈ Cp[[x1, x2, y]] is such that the coefficient of every ym is in
Cp[x1, x2], for every a, b ∈ Cp we may consider g(a, b, y) ∈ Cp[[y]]. By letting x1 = a and
x2 = b in Proposition 5.4, we get the assertions in Proposition 5.3. �

Example 5.5. Suppose that m is a positive integer not divisible by p, hence 1
m
∈ Zp. It

follows from Proposition 5.1 that for every u ∈ Cp with |u|p < 1 (for example, for every
u ∈ pZp) v = (1 + u)1/m is well-defined, and by Proposition 5.3 we have vm = 1 + u.
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