Homework Set 3

Solutions are due Monday, October 8th.

Problem 1. Recall that $GL_n(k)$ denotes the set of invertible $n \times n$ matrices with entries in k. Let $PGL_n(k)$ denote the quotient $GL_n(k)/k^*$, where k^* acts by

$$\lambda \cdot (a_{i,j}) = (\lambda a_{i,j}).$$

- i) Show that $PGL_n(k)$ has a natural structure of affine variety (you may use Pb. 4 on Problem set 5). Show that $PGL_n(k)$ is irreducible.
- ii) Prove that $PGL_n(k)$ acts naturally on \mathbb{P}^n , such that for every $A \in PGL_n(k)$, multiplication by A gives an isomorphism of prevarieties $\mathbb{P}^n \xrightarrow{A} \mathbb{P}^n$.
- iii) Show that given two sets of points in \mathbb{P}^n

$$\Gamma = \{P_0, \dots, P_n\} \text{ and } \Gamma' = \{Q_0, \dots, Q_n\},\$$

neither of them being contained in a hyperplane, there is a unique $A \in PGL_n(k)$ such that $A \cdot P_i = Q_i$ for every i (recall that a hyperplane in \mathbb{P}^n is a closed subset defined by a nonzero linear polynomial).

Two subsets of \mathbb{P}^n are *projectively equivalent* if they differ by an automorphism as above (one can show that these are, indeed, all automorphisms of \mathbb{P}^n).

Problem 2.

- i) Show that every hyperplane in \mathbb{P}^n is isomorphic to \mathbb{P}^{n-1} .
- ii) Show that the hyperplanes in \mathbb{P}^n are parametrized by \mathbb{P}^n (one sometimes writes \mathbb{P}^{n*} for the projective space of hyperplanes in \mathbb{P}^n).

Problem 3. Show that there is a morphism

$$\nu_d \colon \mathbb{P}^1 \to \mathbb{P}^d,$$

defined by $\nu_d(u:v) = (u^d: u^{d-1}v: \ldots : v^d)$. Moreover,

i) Show that if we consider the ring homomorphism

$$f_d \colon k[x_0, \dots, x_d] \to k[u, v],$$

1

given by $f(x_i) = u^{d-i}v^i$, then the kernel I of f_d is homogeneous, and the closed subset it defines is the image of ν_d . Any subset projectively equivalent to $\text{Im}(\nu_d)$ is a rational normal curve in \mathbb{P}^d .

ii) Show that ν_d is a closed immersion.