Homework Set 4

Solutions are due Monday, October 15th.

Problem 1. Recall that if J is an ideal in $k[x_1, \ldots, x_n]$, then

$$J^{\text{hom}} := (f^{\text{hom}} \mid f \in J) \subseteq k[x_0, \dots, x_n],$$

where $f^{\text{hom}} = x_0^{\text{deg(f)}} \cdot f(x_1/x_0, \dots, x_n/x_0)$.

Consider the closed subset in \mathbb{A}^3 given by the image of the morphism $f \colon \mathbb{A}^1 \to \mathbb{A}^2$ \mathbb{A}^3 , $f(t) = (t, t^2, t^3)$. Show on this example that if an ideal J is generated by f_1, \ldots, f_m , then it is not necessarily true that J^{hom} is generated by $(f_1)^{\text{hom}}, \ldots, (f_m)^{\text{hom}}$. However, show that this is true if m = 1 (that is, when J is a principal ideal).

Problem 2. A linear subspace in \mathbb{P}^n is a closed subset whose ideal is generated by linear forms (that is, by homogeneous polynomials of degree one). Show that a closed subset Wof \mathbb{P}^n is a linear subspace if and only if the affine cone C(W) over W is a vector subspace of \mathbb{A}^{n+1} . Moreover, the map $W \to C(W)$ gives a bijection between the linear subspaces of \mathbb{P}^n and the vector subspaces of \mathbb{A}^{n+1} .

The dimension of a linear subspace W in \mathbb{P}^n is defined as $\dim(C(W)) - 1$, where C(W) is the affine cone over W. Recall that a hyperplane in \mathbb{P}^n is a linear subspace of dimension n-1. A line in \mathbb{P}^n is a one-dimensional linear subspace.

Problem 3. Show that if W is a linear subspace of \mathbb{P}^n of dimension r, then W is isomorphic to \mathbb{P}^r .

Problem 4. Suppose that $char(k) \neq 2$. A *quadric* in \mathbb{P}^n is a closed subset of \mathbb{P}^n defined by a reduced homogeneous polynomial of degree two.

- i) Show that every quadric is projectively equivalent to some $V(f_r)$, where $f_r =$ $x_1^2 + \ldots + x_r^2$, with $2 \le r \le n$. ii) Show that such a quadric is irreducible if and only if $r \ge 3$.

Problem 5. Let P be a point and H a hyperplane in \mathbb{P}^n , such that $P \notin H$. The projection from P to H is the map $\phi \colon \mathbb{P}^n \setminus \{P\} \to H$, such that $\phi(Q)$ is the intersection of the line containing P and Q with H.

- i) Show that ϕ is a morphism.
- ii) Suppose that $P = (0: 1: 0: 0) \in \mathbb{P}^3$, and $H = (x_1 = 0) \subseteq \mathbb{P}^3$. Let $X \subseteq \mathbb{P}^3$ be the rational normal curve that is the image of $f: \mathbb{P}^1 \to \mathbb{P}^3$, given by f(u:v) = $(u^3: u^2v: uv^2: v^3)$. Show that if ϕ is the projection from P to H, then $\phi(X)$ is isomorphic to the *cuspidal curve* defined by the equation $y^3 = xz^2$ in \mathbb{P}^2 .