Homework Set 5 Solutions are due Wednesday, October 24th. **Problem 1**. The Veronese embedding. Let n and d be positive integers, and let M_0, \ldots, M_N be all monomials in $k[x_0, \ldots, x_n]$ of degree d (hence $N = \binom{n+d}{d} - 1$). - 1) Show that there is a morphism $\rho_d \colon \mathbb{P}^n \to \mathbb{P}^N$ that takes the point $(a_0 \colon \ldots \colon a_n)$ to the point $(M_0(a) \colon \ldots \colon M_N(a))$. - 2) Consider the ring homomorphism $f_d: k[z_0, \ldots, z_N] \to k[x_0, \ldots, x_n]$ defined by $f_d(z_i) = M_i$. Show that $\ker(f_d)$ is a homogeneous prime ideal that defines in \mathbb{P}^N the image of ρ_d (in particular, this image is closed). - 3) Show that ρ_d is a closed immersion. - 4) Show that if Z is a hypersurface of degree d in \mathbb{P}^n (this means that Z is defined by a homogeneous polynomial of degree d), then there is a hyperplane H in \mathbb{P}^N such that for every projective variety $X \subseteq \mathbb{P}^d$, the morphism ρ_d induces an isomorphism between $X \cap Z$ and $\rho_d(X) \cap H$. (In other words, the Veronese embedding allows to reduce the intersection with a hypersurface to the intersection with a hyperplane). **Remark.** We have seen before the case n=1 of the above embedding, in which case the image is a rational normal curve. **Problem 2**. The incidence correspondence. Consider the dual projective space \mathbb{P}^{n*} parametrizing the hyperplanes in \mathbb{P}^n . Let $$\Gamma = \{(x, H) \in \mathbb{P}^n \times \mathbb{P}^{n*} \mid x \in H\}.$$ - 1) Show that Γ is closed in $\mathbb{P}^n \times \mathbb{P}^{n*}$. - 2) Let $\alpha \colon \Gamma \to \mathbb{P}^n$ and $\beta \colon \Gamma \to \mathbb{P}^{n*}$ be the morphisms induced by the two projections. Show that for $x \in \mathbb{P}^n$ and for $H \in \mathbb{P}^{n*}$, we have $$\alpha^{-1}(x) \simeq \{H' \mid x \in H'\} \simeq \mathbb{P}^{n-1}, \, \beta^{-1}(H) \simeq H \simeq \mathbb{P}^{n-1}.$$ 3) Show that if X is a closed subset of \mathbb{P}^n , then by taking $$W = \alpha^{-1}(X) \to \mathbb{P}^{n*},$$ 1 we get a morphism such that the fiber over every hyperplane $H \in \mathbb{P}^{n^*}$ is the hyperplane section $H \cap X$.