Homework Set 8

Solutions are due Friday, November 16th.

Problem 1. Prove that if X and Y are algebraic varieties, then

$$\dim(X \times Y) = \dim(X) + \dim(Y).$$

We have seen in class that if X and Y are closed subsets in \mathbf{P}^n , with $\dim(X) + \dim(Y) \geq n$, then $X \cap Y \neq \emptyset$. The following problem shows that this is sharp in a strong sense.

Problem 2. Let $X \subseteq \mathbf{P}^n$ be a closed subset of dimension r. Show that there is a linear space $L \subseteq \mathbf{P}^n$ of dimension (n-r-1) such that $L \cap X = \emptyset$. (Hint: use Pb. 1 from Problem session 10).

Problem 3. Let $r \leq \min\{m, n\}$, and consider the generic determinantal variety

$$D_r(m,n) = \{ A \in M_{m,n}(k) \mid \operatorname{rk}(A) \le r \}.$$

Show that $D_r(m,n)$ is irreducible, and compute its dimension, as follows.

i) We identify in the obvious way $M_{m,n}(k)$ with $Hom_k(k^n,k^m)$. Show that the following set

$$Z := \{ (A, L) \in M_{m,n}(k) \times G(n - r, n) \mid L \subseteq \ker(A) \}$$

is closed in $M_{m,n}(k) \times G(n-r,n)$.

- ii) Let $p: Z \to M_{m,n}(k)$ and $q: Z \to G(n-r,n)$ be the two projections. Show that G(n-r,n) can be covered by affine open subsets U_i , such that $q^{-1}(U_i) \simeq U_i \times \mathbf{A}^{rm}$.
- iii) Deduce that Z is irreducible, and $\dim(Z) = mr + nr r^2$.
- iv) Deduce that $D_r(m, n)$ is irreducible, and $\operatorname{codim}(D_r(m, n), M_{m,n}(k)) = (m-r)(n-r)$. (Hint: you can use the result we'll prove in class that if $f: X \to Y$ is dominant, then there is an open subset U of Y such that $\dim(f^{-1}(y)) = \dim(X) \dim(Y)$ for every $y \in Y$).