
LECTURE 1. ZETA FUNCTIONS: AN OVERVIEW

Zeta functions encode the counting of certain objects of geometric, algebraic, or
arithmetic behavior. What distinguishes them from other generating series are special
analytic or algebraic properties.

Zeta functions come up in a lot of area of mathematics. The ones we will deal with
come in two flavors: local and global. Here local means relative to a prime p in Z, or in
some ring of integers in a number field. In this case, one expects the zeta function to be
a rational function, in a suitable variable. By a global zeta function we mean an object
that takes into account all primes. In this case one expects to have a product formula in
terms of local factors. The basic example is the well-known factorization of the Riemann
zeta function:

ζ(s) =
∏

p prime

(
1− 1

ps

)−1

.

A good understanding of the local factors of the zeta function can be used to show that
the global zeta function is defined in some region {s ∈ C | Re(s) > η}, and then there are
fundamental questions regarding analytic continuation and the existence of a functional
equation. Again, the model is provided by the Riemann zeta function. However, very little
is known in a more general setting. The general philosophy is that the analytic properties
of the zeta function encode a lot of information about the geometric/arithmetic/algebraic
of the object that is studied.

In what follows we give an overview of the types of zeta functions that we will discuss
in the following lectures. In all this discussion, we restrict to the simplest possible setting.

1. The Hasse-Weil zeta function

This is one of the most famous zeta functions, and it played an important role in
the development of algebraic geometry in the twentieth century. It is attached to a variety
over a finite field, say k = Fq. Suppose, for simplicity, that X ⊂ An

k is a closed subvariety
defined by the equations f1, . . . , fd.

For every m ≤ 1, let

Nm := |{u ∈ X(Fqm)| = |{u ∈ Fn
qm | fi(u) = 0 for all i}|.

The Hasse-Weil zeta function of X is

Z(X, t) := exp

(∑
m≥1

Nm

m
tm

)
∈ Q[[t]].

A fundamental result is that Z(X, t) is a rational function. This was conjectured by
Weil in [We2], who also proved it for curves and abelian varieties in [We1]. The general
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case was proved by Dwork in [Dwo]. Another proof in the case of smooth projective
varieties was later given by Grothendieck and its school using étale cohomology, see [Gro].
Both the methods of Grothendieck and of Dwork have been extremely influential for the
development of arithmetic geometry.

When X is a smooth projective variety, ZX(t) satisfies

• The functional equation.
• A connection with the Betti numbers defined over C.
• An analogue of the Riemann hypothesis.

These three properties, together with the rationality mentioned above, form the Weil
conjectures [We2], now a theorem of Grothendieck [Gro] and Deligne [Del]. See Lecture 3
for the precise statements.

2. The L-function of an algebraic variety

Suppose now that X ⊂ An
Q is an affine variety defined over Q (or, more generally,

over a number field). We may assume that the equations f1, . . . , fd defining X lie in
Z[1/a][x1, . . . , xn] for some nonzero a ∈ Z. If p is a prime not dividing a, then we may
consider f1, . . . , fd ∈ Fp[x1, . . . , xn] defining Xp ⊆ An

Fp
, and the corresponding Z(Xp, t).

After possibly changing finitely many factors, one puts

LX(s) :=
∏
p 6 |a

Z(Xp, 1/p
s).

Let us consider the case X = Spec Q, when we may take Xp = Spec Fp for every
prime p. Note that

Z(Xp, t) = exp

(∑
e≥1

te

e

)
= exp(−log(1− t)) = (1− t)−1.

Therefore LX(s) =
∏

p

(
1− 1

ps

)−1

= ζ(s) is the Riemann zeta function.

In general, it is not hard to see that LX is defined in some half-plane {s ∈ C |
Re(s) > η} (we will discuss this in Lecture 5 below, with a precise value for η, as a
consequence of the Lang-Weil estimates, which in turn follow from the Weil conjectures
for curves).

It is conjectured that if X is a smooth projective variety over Q, then LX admits
analytic continuation as an entire function (after possibly changing the local factors where
X does not have good reduction). One also expects that after a suitable normalization
(necessary for taking into account the infinite prime) LX satisfies a functional equation.
Very little is know in this direction. Both properties are known for Pn and related vari-
eties (such as toric varieties or flag varieties). The case of elliptic curves is known as a
consequence of the Taniyama-Shimura conjecture (proved by Wiles [Wil], Taylor-Wiles
[TW] and Breuil-Conrad-Diamond-Taylor [BCDT]), which implies that in this case LX

can be described as the L-function attached to a modular form.
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3. The Igusa zeta function

Suppose now, for simplicity, that p is a prime in Z, and X ↪→ An
Zp

is defined by

f ∈ Zp[x1, . . . , xn]. The Igusa zeta function of f is defined by

Zf (s) :=

∫
Zn

p

|f(x)|spdx.

This is defined using the p-adic absolute value | · |p and the Haar measure on Zp. It is
easy to see using the definition that Zf is analytic in the half-plane {s | Re(s) > 0}. Let
us give some motivation for this definition.

3.1. The Archimedean analogue of Zf . The following analogue in the Archimedean
setting (over R or C) appeared before Igusa’s zeta function, in the setting of complex
powers. Suppose, for example, that f ∈ R[x1, . . . , xn], and we want to define |f(x)|s for
s ∈ C as a distribution.

Given a test function Φ, consider the map

s→
∫

Rn

|f(x)|sΦ(x)dx.

It is not hard to see that this is well-defined and analytic in the half-space {s ∈ C |
Re(s) > 0}. Gelfand conjectured that it has a meromorphic continuation to C.

This conjecture was proved by two methods. The first solution, given independently
by Atiyah [Ati] and by Bernstein-Gelfand [BG], used Hironaka’s theorem on resolution
of singularities. This essentially allows replacing f by a monomial, in which case the
assertion can be easily proved via integration by parts. A second proof due to Bernstein
[Ber] directly used integration by parts, relying on the existence of what is nowadays
called the Bernstein-Sato polynomial of f (in the process of proving the existence of this
polynomial, Bernstein established the basics of the algebraic D-module theory).

3.2. The Poincaré power series of f . For every m ≥ 0, let

cm := |{u ∈ (Z/pmZ)n | f(u) = 0}|

(with the convention c0 = 1). The Poincaré series of f is Pf :=
∑

m≥0
cm

pmn t
m ∈ Q[[t]]. It

was a conjecture of Borevich that Pf is a rational function.

It is not hard to see, using the definition of the Haar measure on Zn
p that

Pf (t) =
1− tZf (s)

1− t
,

where t = (1/p)s. The usefulness of the integral expression for Pf via Zf is that allows the
use of the same methods employed in the Archimedean case. Using embedded resolution
of singularities and the change of variable formula for p-adic integrals, Igusa showed that
Zf (s) is a rational function of (1/p)s, see [Igu]. In particular, this proved Borevich’s
conjecture about the rationality of Pf .
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Note that if X = V (f) is smooth over Zp, then the information contained in Pf

is equivalent with that of X(Fp). It is remarkable, in fact, that in general the behavior
of Pf can be linked to invariants of singularities of f . Since an embedded resolution
of singularities comes up in the proof of rationality, it is maybe not too surprising that
invariants that come up via resolutions are related to the poles of Zf . On the other hand, a
very interesting open problem in this field, due to Igusa, concerns a relation between these
poles and the roots of the Bernstein-Sato polynomial of f (compare with the Archimedean
case; note, however, that there is no analogue of integration by parts in the p-adic setting).

One can define a global analogue of Igusa’s zeta function, though this has been a
lot less studied. Suppose that f is a polynomial with coefficients in Z (or, more generally,
in a ring of integers in some number field). For every prime p, we may consider the image
fp of f in Zp[x1, . . . , xn], and the corresponding zeta function Zfp(s). If ap is the constant
coefficient of the power series in (1/p)s representing Zfp(s), then one can define

Z(s) :=
∏

p prime

(
a−1

p Zfp(s)
)
.

All non-trivial results concerning Z are due to du Sautoy and Grunewald [dSG]. They
showed that this function has a rational abscissa of convergence, and that it can be
meromorphically continued to the left of this abscissa. However, it is known that even in
simple examples, Z does not have a meromorphic continuation to C. It is also not clear
how properties of the singularities of f can be recast into analytic properties of Z.

4. Motivic versions of the above (local) zeta functions

Both the Hasse-Weil zeta functions and the Igusa zeta functions have motivic ver-
sions. In this setting, motivic means working with coefficients in the Grothendieck ring
of varieties over a field k. Recall that this is the quotient K0(Var/k) of the free abelian
group on the set of isomorphism classes of varieties over k, by the relations

[X] = [Y ] + [X r Y ],

where Y is a closed subvariety of X.

The motivic analogue of the Hasse-Weil zeta function was introduced by Kapranov
[Kap]. If k is any field, and X is a variety over k, let Symn(X) denote the nth symmetric
product of X. Kapranov’s zeta function is

Zmot(X, t) :=
∑
n≥0

[Symn(X)]tn ∈ K0(Var/k)[[t]].

If k is a finite field, then there is a ring homomorphism K0(Var/k) → Z, that
takes [V ] to |V (k)|. One can show that the induced map K0(Var/k)[[t]] → Z[[t]] takes
Zmot(X, t) to Z(X, t). Kapranov proved in [Kap] that if X is any curve, then Zmot(X, t)
is a rational function. On the other hand, Larsen and Lunts [LL] showed that if X is a
smooth complex surface, then Zmot(X, t) is rational if and only if X has negative Kodaira
dimension. However, it is still open whether Zmot(X, t) is always rational when inverting
the class L of A1 in K0(Var/k).
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Igusa’s zeta function also has a motivic version, due to Denef and Loeser, see [DL].
The idea is to replace Zp by C[[t]] (in this case f is a polynomial with complex coefficients).
The space of integration Zn

p is replaced by (C[[t]])n, and p-adic integrals by the so-called
motivic integrals. Once the framework of motivic integration is in place, the results about
Igusa’s zeta function extend to this framework without much effort.

5. Zeta functions in group theory

5.1. Subgroup growth zeta functions. Let G be a finitely generated group. For every
n ≥ 1, put an(G) := |{H ≤ G | [G : H] = n}, and let

ζG(s) =
∑
n≥1

an(G)

ns
.

This is a global type of zeta function.

The following facts are known:

• If G is solvable, then ζG is analytic in a half-plane of the form {s | Re(s) > α(G)}.
• If G is nilpotent, then there is a product formula

ζG(s) =
∏

p prime

ζG,p(s),

where ζG,p(s) =
∑

n≥0
apn (G)

pns . Furthermore, each ζG,p is a rational function of

(1/p)s.

A key point in the study of ζG,p(s) is the fact that it can be computed by a p-adic
integral, very similar to the ones that come up in the definition of Igusa zeta functions.
A fundamental problem concerns the behavior of ζG,p when p varies. In general, it turns
out that this can be rather wild. Some of the key results in the understanding of this
variation of ζG,p are due to du Sautoy and Grunewald [dSG]. For some recent developments
concerning functional equations in this context, see [Voll].

Similar zeta functions can be defined to measure the rate of growth of other algebraic
subobjects. For example, this can be done for Lie subalgebras of a Lie algebra that is
finitely generated as an abelian group over Z, or for ideals in a ring that is finitely
generated as an abelian group over Z. The corresponding zeta functions have similar
properties with the ones measuring the rate of growth of subgroups, see [dSG].

5.2. Representation zeta functions. Given a group G, let rn(G) denote the number
of equivalence classes of n-dimensional representations of G (with suitable restrictions:
for example, the representations are assumed to be rational if G is an algebraic group).
The representation zeta function of G is

ζrep
G (s) =

∑
n≥1

rn(G)

ns
.
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An interesting example is given by G = SLn(Z). One can show that if n ≥ 3, then

ζrep
SLn(Z)(s) = ζrep

SLn(C)(s) ·
∏

p prime

ζrep
SLn(Zp)(s).

It is somewhat surprising that in the few known examples, the dependence on p of the
p-factors of the representation zeta function is better behaved than in the case of the
subgroup growth zeta functions. Again, a key ingredient in the study of the the p-factors
is given by p-adic integration. We refer to [AKOV] for some interesting new results on
representation zeta functions.
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