
LECTURE 2. THE HASSE-WEIL ZETA FUNCTION: DEFINITION
AND ELEMENTARY PROPERTIES

In this lecture we introduce the Hasse-Weil zeta function, and prove some elementary
properties. Before doing this, we review some basic facts about finite fields and varieties
over finite fields.

1. Review of finite fields

Recall that if k is a finite field, then |k| = pe for some e ≥ 1, where p = char(k).
Furthermore, two finite fields with the same cardinality are isomorphic. We denote a finite
field with q = pe elements (where p is a prime positive integer) by Fq.

Let us fix k = Fq. Given a finite field extension K/k, if r = [K : k], then |K| = qr.
Conversely, given any r ≥ 1, there is a field extension k ↪→ K of degree r. Furthermore,
if k ↪→ K ′ is another such extension, then the two extensions differ by an isomorphism
K ' K ′. More generally, if [K ′ : k] = s, then there is a morphism of k-algebras K → K ′

if and only if r|s.

If k is an algebraic closure of k, then we have an element σ ∈ G(k/k) given by
σ(x) = xq. This is called the arithmetic Frobenius element, and its inverse in G(k/k) is
the geometric Frobenius element. There is a unique subextension of k of degree r that is
contained in k: this is given by K = {x ∈ Fq | σr(x) = x}.

In fact, the Galois group G(K/k) is cyclic or order r, with generator σ|K . Further-
more, we have canonical isomorphisms

G(k/k) ' projlimK/k finiteG(K/k) ' projlimr∈Z>0
Z/rZ =: Ẑ,

with σ being a topological generator of G(k/k).

2. Preliminaries: varieties over finite fields

By a variety over a field k we mean a reduced scheme of finite type over k (possibly
reducible). From now on we assume that k = Fq is a finite field. Recall that there are two
notions of points of X in this context, as follows.

Note that X is a topological space. We denote by Xcl the set of closed points of X
(in fact, these are the only ones that we will consider). Given such x ∈ Xcl, we have the
local ring OX,x and its residue field k(x). By definition, k(x) is isomorphic to the quotient
of a finitely generated k-algebra by a maximal ideal, hence k(x) is a finite extension of k
by Hilbert’s Nullstellensatz. We put deg(x) := [k(x) : k].
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2 M. MUSTAŢĂ

On the other hand, we have the notion of K-valued points of X. Recall that if
k → K is a field homomorphism, the the set of K-valued points of X is

X(K) := HomSpec k(SpecK,X) =
⊔
x∈X

Homk−alg(k(x), K).

We will always consider the case when the extension K/k is algebraic. In this case, if
ϕ : SpecK → X is in X(K), the point x ∈ X that is the image of the unique point in

SpecK is closed: indeed, we have dim {x} = trdeg(k(x)/k) = 0. In particular, we see that
if K/k is a finite extension of degree r, then

(1) X(K) =
⊔

deg(x)|r

Homk−alg(k(x), K).

Note that if deg(x) = e|r, then Homk−alg(k(x), K) carries a transitive action ofG(Fqr/Fq) '
Z/rZ. The stabilizer of any element is isomorphic to G(Fqr/Fqe), hence

|Homk−alg(k(x), K)| = e.

In particular, this proves the following

Proposition 2.1. If X is a variety over the finite field k, and K/k is a field extension
of degree r, then

|X(K)| =
∑
e|r

e · |{x ∈ Xcl | deg(x) = e}.

Remark 2.2. It is clear that if X = Y1∪ . . .∪Ym, where each Yi is a locally closed subset
of X, then X(K) = Y1(K) ∪ . . . ∪ Ym(K). Furthermore, if the former union is disjoint,
then so is the latter one.

Remark 2.3. Suppose that X is affine, and consider a closed embedding X ↪→ An
k

defined by the ideal (F1, . . . , Fd) ⊆ k[x1, . . . , xn]. If K/k is a field extension, then we have
an identification

X(K) = {(u1, . . . , un) ∈ Kn | fi(u1, . . . , un) = 0 for 1 ≤ i ≤ d}.
In particular, we see that if K/k is finite, then X(K) is finite. The formula in Propo-
sition 2.1 now implies that for every e ≥ 1, there are only finitely many x ∈ X with
deg(x) = e. Of course, by taking an affine open cover of X, we deduce that these asser-
tions hold for arbitrary varieties over k.

It is often convenient to think of K-valued points in terms of an algebraic closure
of the ground field. Suppose that k is a fixed algebraic closure of k, and let us write Fqr

for the subfield of k of degree r over k. Let X = X ×Spec k Spec k. This is a variety over

k (the fact that X is reduced follows from the fact that X is reduced and k is perfect;
however, we will not need this). Note that by definition we have X(k) = X(k).

Consider the Frobenius morphism FrobX,q : X → X on X. This is the identity on
X, and the morphism of sheaves of rings OX → OX is given by u → uq (since uq = u
for every u ∈ k, we see that FrobX,q is a morphism of schemes over k. In particular, it

induces a morphism of schemes over k:

FrobX,q = FrobX,q × id : X → X.
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Note that this is a functorial construction. In particular, if X is affine and if we consider a
closed immersion X ↪→ AN

k , then FrobX,q is induced by FrobAN
k
,q. This is turn corresponds

to the morphism of k-algebras

k[x1, . . . , xN ]→ k[x1, . . . , xN ], xi → xqi ,

hence on k-points it is given by (u1, . . . , uN)→ (uq1, . . . , u
q
N). We conclude that the natural

embedding

X(Fqr) ↪→ X(k) = X(k)

identifies X(Fqr) with the elements of X(k) fixed by Frobr
X,q

. Indeed, this is clear when

X = AN
k by the previous discussion, and the general case follows by considering an affine

open cover, and by embedding each affine piece in a suitable affine space.

In other words, if ∆,Γr ⊂ X × X are the diagonal, and respectively, the graph of
Frobr

X,q
, then X(Fqr) is in natural bijection with the closed points of Γr∩∆. The following

proposition shows that when X smooth, this is a transverse intersection.

Proposition 2.4. If X is smooth over k = Fq, then the intersection Γr ∩∆ consists of a
reduced set of points.

Note that since k is perfect, X is smooth over k if and only if it is nonsingular.

Proof. We have already seen that the set Γr ∩ ∆ is finite, since it is in bijection with
X(Fqr). In order to show that it is a reduced set, let us consider first the case when

X = An
Fq

. In this case, if R = k[x1, . . . , xn, y1, . . . , yn], then ∆ ⊂ SpecR is defined by

(y1 − x1, . . . , yn − xn) and Γr is defined by (y1 − xq1, . . . , yr − xqr). Therefore Γr ∩ ∆ is
isomorphic to

∏n
i=1 Spec k[xi]/(xi − xqi ), hence it is reduced (note that the polynomial

xqi − xi has no multiple roots).

For an arbitrary smooth variety X, let us consider u ∈ X(Fqe), and let x ∈ X be
the corresponding closed point. If t1, . . . , tn form a regular system of parameters of OX,x,
it follows that (t1, . . . , tn) define an étale map U → An, where U is an open neighborhood
of x. Note that the restriction to U × U of ∆ and Γr are the inverse images via U ×
U → An

k
×An

k
of the corresponding subsets for An

k
. Since the inverse image of a smooth

subscheme by an étale morphism is smooth, we deduce the assertion in the proposition
for X from the assertion for An

k . �

Exercise 2.5. Let X and X be as above. The group G = G(k/k) acts on the right on
Spec k, by algebraic automorphisms.

i) Show that G has an induced right action on X, by acting on the second component
of X ×Spec k Spec k. Of course, these automorphisms are not of schemes over k.

ii) Let τ : X → X be the action of the arithmetic Frobenius element. Describe τ when
X = An

k . Show that τ ◦ FrobX,q = FrobX,q ◦ τ , and they are equal to the absolute

q-Frobenius morphism of X (recall: this is the identity on X, and the morphism
of sheaves of rings OX → OX is given by u→ uq).
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iii) We also have a natural left action of G on X(k) that takes (g, ϕ) to ϕ ◦ g (where
we identify g with the corresponding automorphism of Spec k). Show that the
arithmetic Frobenius acts on X(k) = X(k) by the map induced by FrobX,q.

iv) The canonical projection X → X induces a map Xcl → Xcl. Show that this is
identified via X(k) = X(k) = Xcl with the map described at the beginning of this
section, that takes a k-valued point of X to the corresponding closed point of X.

v) We similarly have a left action of G(Fqr/Fq) on X(Fqr). Show that the fibers of
the map X(Fqr)→ Xcl that takes an Fqr -valued point to the corresponding closed
point of X are precisely the orbits of the G(Fqr/Fq)-action.

3. The Hasse-Weil zeta function

3.1. The exponential and the logarithm power series. Recall that the exponential
formal power series is given by

exp(t) =
∑
m≥0

tn

n!
∈ Q[[t]].

We will also make use of the logarithm formal power series, defined by

log(1 + t) =
∑
m≥1

(−1)m+1tm

m
∈ Q[[t]].

In particular, we may consider exp(u(t)) and log(1 + u(t)) whenever u ∈ tQ[[t]].

We collect in the following proposition some well-known properties of the exponential
and logarithm formal power series. We will freely use these properties in what folows.

Proposition 3.1. The following properties hold:

i) We have exp(t)′ = exp(t) and log(1 + t)′ = (1 + t)−1.
ii) exp(s+ t) = exp(s) · exp(t) in Q[[s, t]]. In particular, we have exp(u+v) = exp(u) ·

exp(v) for every u, v ∈ tQ[[t]].
iii) exp(mt) = exp(t)m for every m ∈ Z. In particular, exp(mu) = exp(u)m for every

u ∈ tQ[[t]].
iv) log(exp(u)) = u and exp(log(1 + u)) = 1 + u for every u ∈ tQ[[t]].
v) log((1 + u)(1 + v)) = log(1 + u) + log(1 + v) for every u, v ∈ tQ[[t]].
vi) log((1 + u)m) = m · log(1 + u) for every m ∈ Z and every u ∈ tQ[[t]].

Proof. The proofs are straightforward. i) and ii) follow by direct computation, while iii)
is a direct consequence of i). It is enough to prove the assertions in iv) for u = t. The first
assertion now follows by taking formal derivatives of the both sides. Note that we have
two ring homomorphisms f, g : Q[[t]] → Q[[t]], f(u) = log(1 + u) and g(v) = exp(v) − 1.
They are both isomorphisms by the formal Inverse Function theorem, and f ◦ g = Id by
the first equality in iv). Therefore g ◦ f = Id, which is the second equality in iv). The
assertions in v) and vi) now follow from ii) and iii) via iv). �
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3.2. The definition of the Hasse-Weil zeta function. Suppose that X is a variety
over a finite field k = Fq. For every m ≥ 1, let Nm = |X(Fqm)|1. The Hasse-Weil zeta
function of X is

(2) Z(X, t) = exp

(∑
m≥1

Nm

m
tm

)
∈ Q[[t]].

The following proposition gives a product formula for Z(X, t) that is very useful in prac-
tice.

Proposition 3.2. For every variety X over Fq, we have

(3) Z(X, t) =
∏
x∈Xcl

(1− tdeg(x))−1.

In particular, Z(X, t) ∈ Z[[t]].

By making t = p−s, we see that the above formula is analogous to the product
formula for the Riemann zeta function.

Proof. Let us put ar := |{x ∈ Xcl | [k(x) : Fq] = r}| for every r ≥ 1. Therefore the right-
hand side of (3) is equal to

∏
r≥1(1− tr)−ar . It is clear that this product is well-defined in

Z[[t]].

Recall that by Proposition 2.1, we have Nm =
∑

r|m r · ar. It follows from definition
that

log(Z(X, t)) =
∑
m≥1

Nm

m
tm =

∑
m≥1

∑
r|m

r · ar
m

tm =
∑
r≥1

ar ·
∑
`≥1

t`r

`
=
∑
r≥1

(−ar) · log(1− tr)

=
∑
r≥1

log(1− tr)−ar = log

(∏
r≥1

(1− tr)−ar

)
.

The formula (3) now follows applying exp on both sides. �

Remark 3.3. Suppose that q = (q′)m. If X is a variety over Fq, we may consider X as a
variety over Fq′ , in the natural way. For every closed point x ∈ X, we have deg(k(x)/Fq′) =
m · deg(k(x)/Fq). It follows from Proposition 3.2 that Z(X/Fq′ , t) = Z(X,Fq, t

m).

Remark 3.4. One can interpret the formula in Proposition 3.2 by saying that Z(X, t)
is a generating function for the effective 0-cycles on X. Recall that the group of 0-cycles
Z0(X) is the free abelian group generated by the (closed) points of X. Given a 0-cycle
α =

∑r
i=1 mixi, its degree is deg(α) =

∑r
i=1mi deg(xi). A 0-cycle

∑
imixi is effective if

all mi are nonnegative. With this terminology, we see that the formula in Proposition 3.2
can be rewritten as

Z(X, t) =
∏
x∈Xcl

(1 + tdeg(x) + t2 deg(x) + . . .),

1If k′ is a finite extension of k of degree m, then the set X(k′) depends on this extension. However,
any two extension of k of the same degree differ by a k-automorphism, hence |X(k′)| only depends on
|k′|.
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and multiplying we obtain

(4) Z(X, t) =
∑
α

tdeg(α),

where the sum is over all effective 0-cycles on X.

3.3. Examples and elementary properties. We start with the example of the affine
space.

Example 3.5. Let k = Fq, and X = An
k . It is clear that for every finite extension k′/k

we have X(k′) = (k′)n, hence |X(k′)| = |k′|n. We conclude that

Z(An, t) = exp

(∑
m≥1

qmn

m
tm

)
= exp (−log(1− qnt)) =

1

(1− qnt)
.

Example 3.6. More generally, note that for every two varieties X and Y , we have X ×
Y (k′) = X(k′)× Y (k′). In particular, if X = An, we have |An× Y (Fqm)| = |Y (Fqm)|qmn,
hence

Z(An × Y, t) = exp

(∑
m≥1

|Y (Fqm)|qmn

m
tm

)
= Z(Y, qnt).

Proposition 3.7. If X is a variety over Fq, and Y is a closed subvariety of X, then
Z(X, t) = Z(Y, t) · Z(U, t), where U = X r Y .

Proof. It is clear that for every m ≥ 1 we have |X(Fqm)| = |Y (Fqm)| + |U(Fqm)|. The
assertion in the proposition is an immediate consequence of this and of the fact that
exp(u+ v) = exp(u) · exp(v) for every u, v ∈ tQ[[t]]. �

Corollary 3.8. The zeta function of the projective space is given by

Z(Pn
Fq
, t) =

1

(1− t)(1− qt) · · · (1− qnt)
.

Proof. The assertion follows from Example 3.5 by induction on n, using Proposition 3.7,
and the fact that we have a closed embedding Pn−1

Fq
↪→ Pn

Fq
, whose complement is iso-

morphic to An
Fq

. �

Proposition 3.9. Let X be a variety over k = Fq, and let k′/k be a field extension of
degree r. If X ′ = X ×Spec k Spec k′, then

Z(X ′, tr) =
r∏
i=1

Z(X, ξit),

where ξ is a primitive root of order r of 1.

Proof. Let us put N ′m := |X ′(Fqrm)| and Nm = |X(Fqm)|, hence N ′m = Nmr. By definition,
it is enough to show that ∑

m≥1

Nmr

m
tmr =

r∑
i=1

∑
`≥1

N`

`
ξi`t`.
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This is a consequence of the fact that
∑r

i=1 ξ
i` = 0 if r does not divide `, and it is equal

to r, otherwise. �
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