
LECTURE 3. THE STATEMENTS OF THE WEIL CONJECTURES

In this lecture we give the statements of the Weil Conjectures, make some general
comments, and give some examples.

1. The statements

Suppose that X is a smooth, geometrically connected, projective variety, of dimen-
sion n, defined over a finite field k = Fq. We put Z(t) = Z(X, t).

Conjecture 1.1 (Rationality). Z(t) is a rational function, i.e. it lies in Q(t).

Conjecture 1.2 (Functional equation). If E = (∆2) is the self-intersection of the diag-
onal ∆ ↪→ X ×X, then

Z

(
1

qnt

)
= ±qnE/2tEZ(t).

Conjecture 1.3 (Analogue of Riemann hypothesis). One can write

Z(t) =
P1(t) · P3(t) · · ·P2n−1(t)

P0(t) · P2(t) · · ·P2n(t)
,

with P0(t) = 1− t, P2n(t) = 1− qnt, and for 1 ≤ 2n− 1, we have Pi(t) ∈ Z[t],

Pi(t) =
∏

j

(1− αi,jt),

with αi,j algebraic integers with |αi,j| = qi/2.

Note that the conditions in the above conjecture uniquely determine the Pi.

Conjecture 1.4. Assuming Conjecture 1.3, define the “ith Betti number of X” as bi(X) :=
deg(Pi(t)). In this case, the following hold:

i) E =
∑2n

i=0(−1)ibi(X).
ii) Suppose that R is a finitely generated Z-subalgebra of the field C of complex num-

bers, X̃ is a smooth projective scheme over SpecR, and P ∈ SpecR is a prime

ideal such that R/P = Fq and X̃ ×Spec R SpecR/P = X. Then

bi(X) = dimQH
i
(

(X̃ ×Spec R Spec C)an,Q
)
.

As we will see in Lecture 5, one can in fact formulate Conjecture 1.4 without assum-
ing Conjecture 1.3. We will give in the next lecture the proofs of the above conjectures
in the case of curves. In Lecture 5 we will give a brief introduction to `-adic cohomology,
and explain how this formalism allows one to prove Conjectures 1.1, 1.2, and 1.4 (where
in Conjecture 1.1 one just has to assume that X is of finite type over Fq). The harder
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Conjecture 1.3 was proved by Deligne [Del], and a later proof was given by Laumon [Lau],
but both these proofs go far beyond the scope of our lectures. We should also mention
that the first proof of Conjecture 1.1, for arbitrary schemes of finite type over Fq, was
obtained by Dwork [Dwo] using p-adic analysis.

2. Comments on the conjectures

Remark 2.1. Let X be an arbitrary variety over k = Fq, and let Y ↪→ X be a closed
subvariety, and U = X r Y . It follows from Proposition 3.5 in Lecture 2 that Z(X, t) =
Z(Y, t) ·Z(U, t). Therefore if two of Z(X, t), Z(Y, t) and Z(U, t) are known to be rational,
then the third one is rational, too.

Remark 2.2. The above remark implies that if we assume resolution of singularities
over finite fields, then a positive answer to Conjecture 1.1 for smooth projective varieties
implies the rationality of Z(X, t) for every variety X over a finite field. Indeed, suppose
by induction on dimension that the assertion is known for varieties of dimension < n.
Remark 2.1 and the induction hypothesis imply that if X and Y are varieties of dimension
n that have dense open subsets U , respectively V , that are isomorphic, then Z(X, t) is
rational if and only if Z(Y, t) is rational. Given any n-dimensional variety X, there is
a projective variety Y such that there are U and V as above. Furthermore, if we have
resolution of singularities over our ground field, then we may assume that Y is also smooth.
Therefore Z(Y, t) is rational by Conjecture 1.1 (note that the irreducible components Yi

of Y are disjoint, hence Z(Y, t) =
∏

i Z(Yi, t), any we apply Conjecture 1.1 to each Yi).

Remark 2.3. In a similar vain, in order to prove that Z(X, t) is rational for every variety
X, it is enough to prove it in the case when X is an irreducible hypersurface in An

Fq
.

Indeed, arguing as in the previous remark we see that we may assume that X is affine
and irreducible, in which case it is birational (over Fq) with a hypersurface in an affine
space.

Remark 2.4. There is the following general formula in intersection theory: if i : Y ↪→ X
is a closed embedding of nonsingular varieties of pure codimension r, then i∗(i∗(α)) =
cr(NY/X) ∩ α for every α ∈ A∗(X), where NY/X is the normal bundle of Y in X.

In particular, if X is smooth, projective, of pure dimension n, and ∆: X ↪→ X ×X
is the diagonal embedding, then NX/X×X = TX , and therefore

(∆2) = deg(cn(TX)).

Example 2.5. Let us check the Weil conjectures when X = Pn
Fq

. As we have seen in
Corollary 3.6 in Lecture 3, we have

(1) Z(Pn, t) =
1

(1− t)(1− qt) · · · (1− qnt)
.

In particular, it is clear that Conjectures 1.1 and 1.3 hold in this case. It follows from (1)
that

Z(X, 1/qnt) =
1(

1− 1
qnt

)(
1− 1

qn−1t

)
· · ·
(
1− 1

t

) = (−1)n+1tn+1qn(n+1)/2Z(X, t).
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Hence in order to check Conjecture 1.2, it is enough to show that E = n + 1. The Euler
exact sequence

0→ OPn → OPn(1)⊕(n+1) → TPn → 0

implies c(TPn) = c(OPn(1)⊕(n+1)) = (1 + h)n+1, where h = c1(OPn(1)). This implies that
deg(cn(TPn)) = n+ 1.

Since H∗(Pn
C,Q) ' Q[t]/(tn+1), with deg(t) = 2, the assertions in Conjecture 1.4

also follow.

Remark 2.6. Let X be a variety over Fq, and suppose we know that Z(X, t) is rational.

Let us write Z(X, t) = f(t)
g(t)

, with f, g ∈ Q[t]. After dividing by the possible powers of t,

we may assume that f(0), g(0) 6= 0, and after normalizing, that f(0) = 1 = g(0).

We write f(t) =
∏r

i=1(1− αit) and g(t) =
∏s

j=1(1− βjt). If Nm = |X(Fqm)|, then∑
m≥1

Nm

m
tm =

r∑
i=1

log(1− αit)−
s∑

j=1

log(1− βjt),

hence Nm =
∑s

j=1 β
m
j −

∑r
i=1 α

r
i for every m ≥ 1.

3. Two examples: computing the Betti numbers for Grassmannians and
full flag varieties

One can use the above Conjecture 1.4 to compute the Betti numbers of smooth
complex projecive varieties. We illustrate this by computing the Poincaré polynomials for
Grassmannians and full flag varieties. For a famous example, in which the Weil conjec-
tures are used to compute the Betti numbers of the Hilbert schemes of points on smooth
projective surfaces, see [Göt].

Recall that both the Grassmannian and the flag variety can be defined over Z. More
precisely, if 1 ≤ r ≤ n − 1, there is a scheme Gr(r, n) defined over Spec Z, such that
for every field K, the K-valued points of Gr(r, n) are in bijection with the r-dimensional
subspaces of Kn. Similarly, we have a scheme Fl(n) defined over Spec Z such that for every
field K, the K-valued points of Fl(n) are in bijection with the full flags on Kn, that is,
with the n-tuples of linear subspaces V1 ⊂ V2 ⊂ . . . ⊂ Vn = Kn, with dim(Vi) = i for every
i. It is well-known that both Gr(r, n) and Fl(n) are smooth, geometrically connected, and
projective over Spec Z. For every field K, we put Gr(r, n)K = Gr(r, n) × SpecK and
Fl(n)K = Fl(n)× SpecK.

Recall that the Poincaré polynomial of a complex algebraic variety X is given by

PX(y) =
∑2 dim(X)

i=0 (−1)i dimQH
i(X(C)an,Q)yi. In order to compute the Poincaré poly-

nomials of Gr(r, n)C and Fl(n)C, we need to compute the zeta functions Z(Gr(r, n)Fq , t)
and Z(Fl(n)Fq , t). Therefore we need to determine the numbers aq(r, n) and bq(n) of r-
dimensional linear subspaces of Fn

q , respectively, of full flags on Fn
q .

In fact, we first compute bq(n), and then use this to compute aq(r, n). In order to
give a full flag in Fn

q , we first need to give a line L1 in Fn
q , then a line L2 in Fn

q /L1, and
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so on. This shows that

bq(n) = |Pn−1(Fq)| · |Pn−2(Fq)| · · · |P1(Fq)|,
and therefore

(2) bq(n) =
(qn − 1)(qn−1 − 1) · · · (q − 1)

(q − 1)n
= (1 + q)(1 + q + q2) · · · (1 + q + . . .+ qn−1).

We now compute aq(r, n). Note that we have an action of GLn(Fq) on Gr(r, n)(Fq)
induced by the natural action on Fn

q . This action is transitive, and the stabilizer of the
subspace W generated by e1, . . . , er (where e1, . . . , en is the standard basis of Fn

q ) is the
set of matrices

{A = (ai,j) ∈ GLn(Fq) | ai,j = 0 for r + 1 ≤ i ≤ n, 1 ≤ j ≤ r}.
If A = (ai,j) ∈ Mn(Fq) is such that ai,j = 0 for r + 1 ≤ i ≤ n and 1 ≤ j ≤ r, then A
is invertible if and only if the two matrices (ai,j)i,j≤r and (ai,j)i,j≥r+1 are invertible. We
conclude that the number of elements in the stabilizer of W is

(3) |GLr(Fq)| · |GLn−r(Fq)| · |Mr,n−r(Fq)|.

In order to compute |GLr(Fq)|, we use the transitive action of GLr(Fq) on Fl(r)(Fq)
induced by the natural action on Fr

q. The stabilizer of the flag

〈e1〉 ⊂ 〈e1, e2〉 ⊂ . . . ⊂ Fn
q

is the set of upper triangular matrices in GLr(Fq), and there are (q − 1)rqr(r−1)/2 such
matrices. We conclude that

|GLr(Fq)| = bq(r)q
r(r−1)/2(q − 1)r = qr(r−1)/2(qr − 1)(qr−1 − 1) · · · (q − 1).

We now deduce from (3) that

aq(r, n) =
|GLn(Fq)|

|GLr(Fq)| · |GLn−r(Fq)| · qr(n−r)
=

(qn − 1) · · · (q − 1)

(qr − 1) · · · (q − 1)(qn−r − 1) · · · (q − 1)

(4) =
(qn − 1) · · · (qn−r+1 − 1)

(qr − 1) · · · (q − 1)
.

The expression in (4) is called the Gaussian binomial coefficient, and it is denoted by(
n
r

)
q

(there are many analogies with the usual binomial coefficients; in any case, note that

limq→1

(
n
r

)
q

=
(

n
r

)
).

Exercise 3.1. Prove the following properties of Gaussian binomial coefficients:

i)
(

n
r

)
q

= qr
(

n−1
r

)
q

+
(

n−1
r−1

)
q

(generalized Pascal identity).

ii) Using i) and induction on n, show that if λn,r(j) denotes the number of partitions
of j into ≤ n− r parts, each of size ≤ r, then

(5)

(
n

r

)
q

=

r(n−r)∑
j=0

λn,r(j)q
j.
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A variety X over Fq is called of polynomial count if there is a polynomial P ∈ Z[y]
such that the number of Fqm-valued points of X is P (qm) for every m ≥ 1. It follows from
(2) that Fl(n)Fq is of polynomial count. Similarly, Gr(r, n)Fq is of polynomial count by
(4) and part ii) in the above exercise.

Lemma 3.2. Suppose that X is a variety over Fq, and P (y) = ady
d +ad−1y

d−1 + . . .+a0,
with all ai ∈ Z, is such that |X(Fm

q )| = P (qm) for every m ≥ 1. In this case the zeta
function of X is given by

Z(X, t) =
d∏

i=0

(1− qit)−ai .

Proof. We have ∑
m≥1

Nm

m
tm =

n∑
i=0

ai

∑
m≥1

qmi

m
tm =

n∑
i=0

−ailog(1− qit).

Therefore by taking exp we get the formula in the lemma. �

Remark 3.3. In the context of the lemma, if X is smooth and projective, then the
analogue of the Riemann hypothesis implies that ai ≥ 0 for all i. In this context, we have
bi(X) = 0 for i odd, and b2i(X) = ai for 1 ≤ i ≤ n.

By combining Lemma 3.2 with Conjecture 1.4, our computations for the flag variety
and the Grassmannian give the following.

Corollary 3.4. The Poincaré polynomial of Fl(n)C is given by
∏n

i=1(1 + y2 + . . .+ y2i),

and the Poincaré polynomial of Gr(r, n)C is given by
∑r(r−n)

i=0 λn,r(i)y
2i.
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