
LECTURE 4. THE WEIL CONJECTURES FOR CURVES

In this lecture we consider a smooth projective curve X defined over k = Fq. Let k

denote an algebraic closure of k and X = X ×Spec k Spec k. If π : X → X is the natural
projection, then for every quasicoherent sheaf F on X, we have canonical isomorphisms
H i(X,F)⊗k k ' H i(X, π∗(F)).

We always assume that X is geometrically connected, that is, X is connected. In
this case X is a smooth, irreducible, projective curve over k. Since H0(X,OX) = k, we
get H0(X,OX) = k. Recall that the genus of X is g := h1(X,OX) = h1(X,OX).

Our goal in this lecture is to prove the Weil conjectures in this setting. As we have
seen in Lecture 2, Z(X, t) can be viewed as a generating function for effective 0-cycles on
X. Since X is a curve, a 0-cycle is the same as a Weil divisor on X. We start by recalling
a few generalities about divisors and line bundles on X.

A divisor on X is a finite formal combination
∑r

i=1 aiPi, where ai ∈ Z and Pi is a
closed point of X. One says that D is effective if ai ≥ 0 for all i. Note that every such
divisor is automatically Cartier since X is nonsingular. The degree of D is deg(D) :=∑

i ai · [k(Pi) : k]. The line bundle associated to D is denoted by OX(D). The degree map
induces a morphism of abelian groups deg : Pic(X)→ Z.

Given a line bundle L on X, the set of effective divisors D on X with OX(D) ' L is
in bijection with the quotient of H0(X,L) r {0} by the action of the invertible elements
in H0(X,OX) via multiplication. By assumption, H0(X,OX) = k, hence this space of
divisors is nonempty if and only if H0(X,L) 6= 0, and in this case it is in bijection with

Ph0(L)−1(Fq), hence it has qh0(L)−1
q−1

elements.

The Riemann-Roch theorem says that for every divisor D on X,

(1) χ(X,OX(D)) = deg(D)− g + 1.

Furthermore, recall that if deg(OX(D)) ≥ 2g− 1, then H1(X,OX(D)) = 0, in which case
h0(X,OX(D)) = deg(D)− g + 1. We will also make use of Serre duality: if ωX = ΩX/k is
the canonical line bundle on X, then for every line bundle L on X we have h1(X,L) =
h0(X,ωX ⊗ L−1). Note that deg(ωX) = 2g − 2. All the above assertions can be proved
by passing to k, and using the familiar results over algebraically closed fields, see [Har,
Chapter IV.1].

There is a variety J(X) defined over k, with the following property: for every field
extension k′ of k, the k′-valued points of J(X) are in natural bijection with the line
bundles of degree zero on X×Spec k Spec k′. In particular, the number h of line bundles on
X of degree zero is equal to |J(X)(k)|, hence it is finite (and, of course, positive). Note
that if Picm(X) denotes the set of line bundles on X of degree m, then Picm(X) is either
empty, or it has h elements (we will see below that Picm(X) is never empty).
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2 LECTURE 4. THE WEIL CONJECTURES FOR CURVES

1. Rationality of the zeta function

We first prove the first of the Weil conjectures. In fact, we will prove the following
more precise statement below. In this section and the next one, we follow [Lor, Chapter 8].

Theorem 1.1. If X is a smooth, geometrically connected, projective curve of genus g
over Fq, then

Z(X, t) =
f(t)

(1− t)(1− qt)
,

where f ∈ Z[t] is a polynomial of degree ≤ 2g, with f(0) = 1 and f(1) = h, where
h = |J(X)(Fq)|.

Proof. It follows from Proposition 1 in Lecture 2 that

Z(X, t) =
∏

x∈Xcl

1

1− tdeg(x)
=
∑
D≥0

tdeg(D),

where the last sum is over the effective divisors D on X. We will break this sum into two
sums, depending on whether deg(D) ≥ 2g − 1 or deg(D) ≤ 2g − 2.

Let e > 0 be the positive integer such that deg(Pic(X)) = eZ. For every m such
that e|m, we have

|{L ∈ Pic(X) | deg(L) = m}| = h.

As we have seen, if h0(X,L) ≥ 1, then the number of effective divisors D with OX(D) ' L

is qh0(L)−1
q−1

. In particular, if m is a nonegative integer with m ≥ 2g− 1, then for every L ∈
Pic(X) with deg(L) = m, we have exactly qm−g+1−1

q−1
effective divisors D with OX(D) ' L.

Let d0 be the smallest nonnegative integer such that d0e ≥ 2g − 1. We deduce that

(2) Z(X, t) =
∑

D≥0,deg(D)≤2g−2

tdeg(D) +
∑
d≥d0

h
qde−g+1 − 1

q − 1
tde.

Note that the first sum in (2) is a polynomial in te of degree ≤ (2g − 2)/e. Since∑
d≥d0

tde = td0e

1−te
and

∑
d≥d0

qdetde = (qt)d0e

1−(qt)e , the second sum in (2) is equal to

(3)
h

(q − 1)
·
(
q1−g · (qt)d0e

1− (qt)e
− td0e

1− te

)
.

We conclude that we may write

(4) Z(X, t) =
f(te)

(1− te)(1− qete)
,

where f is a polynomial with rational coefficients of degree ≤ max{2 + 2g−2
e
, d0 + 1}. In

fact, since Z(X, t) has integer coefficients, we see that f has integer coefficients, as well.

This already shows that Z(X, t) is a rational function. We now show the more precise
assertions in the statement of the theorem. Note first that the expression in (3) implies
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that

(5) lim
t→1

(t− 1)Z(X, t) = − h

q − 1
· lim

t→1

t− 1

1− te
=

h

e(q − 1)
.

In particular, we see that Z(X, t) has a pole of order one at t = 1.

We now show that, in fact, e = 1. Consider X ′ = X ×SpecFq Spec Fqe . We have seen
in Lecture 2, Proposition 3.8 that

Z(X ′, te) =
e∏

i=1

Z(X, ξit),

where ξ is an eth primitive root of 1. It follows from the formula in (4) that Z(X ′, te) =
Z(X, t)e. On the other hand, applying what we have proved so far to X ′, we see that
Z(X ′, t) has a pole of order one at t = 1, and therefore Z(X ′, te) has the same property.
This implies that e = 1. If g ≥ 0, then d0 = 2g − 1, so that deg(f) ≤ 2g. On the other
hand, d0 = 0 if g = 0, and the formula in (3) shows that f = h in this case. The remaining
assertions in the theorem now follow from (4) and (5). �

For future reference, we state explicitly the following result that was showed during
the proof of Theorem 1.1.

Corollary 1.2. If X is a smooth, geometrically connected, projective curve over Fq, then
all Picm(X) have the same (nonzero) number of elements.

Remark 1.3. If X is a smooth, geometrically connected, projective curve of genus zero
over Fq, it follows from the previous corollary that there is a line bundle L ∈ Pic(X) with
deg(L) = 1. This gives an isomorphism X ' P1

Fq
.

2. The functional equation

In our setting, if ∆ is the diagonal in X × X, then (∆2) can be computed via the
adjunction formula: if `1 = X × pt and `2 = pt ×X, then (`21) = 0 = (`02), (`1 · `2) = 1,
and (∆ · `1) = 1 = (∆ · `2). Therefore we have

2g − 2 = (∆ · (∆ + (2g − 2)`1 + (2g − 2)`2)) = (∆2) + 2(2g − 2).

Hence (∆2) = 2−2g, and the statement of the second Weil conjecture for curves becomes
the following.

Theorem 2.1. If X is a smooth, geometrically connected, projective curve over Fq, then

Z(X, 1/qt) = q1−gt2−2gZ(X, t).

Proof. As we will see, the key ingredient in the proof is Serre duality. If g = 0, it follows
from Remark 1.3 that X ' P1

Fq
. In this case Z(X, t) = 1

(1−t)(1−qt)
, and the formula in the

theorem is straightforward to check (we did it for all projective spaces in Lecture 3). Hence
from now on we may assume that g ≥ 1. We follow the approach to Z(X, t) =

∑
D≥0 t

D

used in the previous section.
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Recall that for every line bundle L ∈ Pic(X) with h0(L) ≥ 1, the effective divisors

D with O(D) ' L form the Fq-points of a projective space Ph0(L)−1, hence there are
qh0(L)−1

q−1
such divisors. Using the fact that h0(L) = deg(L)− g + 1 when deg(L) ≥ 2g − 1

and Corollary 1.2, we conclude that

(6) Z(X, t) =

2g−2∑
m=0

 ∑
L∈Picm(X)

qh0(L) − 1

q − 1

 tm +
∑

m≥2g−1

h
qd−g+1 − 1

q − 1
td = S1 + S2,

where

(7) S1 =

2g−2∑
m=0

∑
L∈Picm(X)

qh0(L)

q − 1
tm, S2 = − h

q − 1
· 1

1− t
+

hq1−g(qt)2g−1

(q − 1)(1− qt)
.

Note that

S2(1/qt) = − h

q − 1
· qt

1− qt
− hq1−gt2−2g

(q − 1)(1− t)

= q1−gt2−2g ·
(

hqgt2g−1

(q − 1)(1− qt)
− h

(q − 1)(1− t)

)
= q1−gt2−2gS2(t).

On the other hand, L→ ωX ⊗ L−1 gives a bijection between the set of line bundles
on X of degree in [0, 2g− 2], and Serre duality plus Riemann-Roch gives h0(ωX ⊗L−1) =
h0(L)− (deg(L)− g + 1). Therefore

S1(1/qt) =

2g−2∑
m=0

 ∑
L∈Picm(X)

qh0(L)

q − 1

( 1

qt

)m

=

2g−2∑
m=0

 ∑
L∈Picm(X)

qh0(ωX⊗L−1)

q − 1

( 1

qt

)2g−2−m

=

2g−2∑
m=0

 ∑
L∈Picm(X)

qh0(L)−m+g−1

q − 1

 (qt)m+2−2g = t2−2gq1−g

2g−2∑
m=0

 ∑
L∈Picm(X)

qh0(L)

q − 1

 tm

= q1−gt2−2gS1(t).

This completes the proof of the theorem. �

Remark 2.2. With the notation in Theorem 1.1, we write f(t) =
∏2g

i=1(1 − ωit), with
ωi ∈ C, possibly zero. We have

Z(X, 1/qt) =

∏2g
i=1

(
1− ωi

qt

)
(

1− 1
qt

) (
1− 1

t

) =
qt2(qt)−2g

∏2g
i=1(qt− ωi)

(1− t)(1− qt)
= q1−gt2−2g ·

∏2g
i=1(1− ωit)

(1− t)(1− qt)
,

where the last equality is a consequence of Theorem 2.1. Therefore
∏2g

i=1(t − ωi/q) =

q−g ·
∏2g

i=1(1− ωit).

The first consequence is that ωi 6= 0 for all i, that is, deg(f) = 2g. Furthermore,
we see that

∏2g
i=1 ωi = qg, and the multiset {ω1, . . . , ω2g} is invariants under the map

x→ q/x.
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Remark 2.3. Note that the assertion in the fourth Weil conjecture in now clear in our
setting. Indeed, we have B0 = B2 = 1 and B1 = 2g. Recall that E = 2 − 2g, hence
E = B0 − B1 + B2. Furthermore, if X is the closed fiber of a smooth projective curve

X̃ over a finite type Z-algebra R, then X̃C := X̃ ×Spec R Spec C is a smooth connected
complex curve of genus g. Its Betti numbers are b0 = b2 = 1, and b1 = 2g (the formula for

b1 is a consequence of Hodge decomposition: b1(X̃C) = h0(Ω eXC
) + h1(O eXC

) = 2g). This
proves all the assertions in the fourth Weil conjecture for X.

3. The analogue of the Riemann hypothesis

We use the notation for the zeta function Z(X, t) introduced in Remark 2.2:

(8) Z(X, t) =

∏2g
i=1(1− ωit)

(1− t)(1− qt)
.

The following proves the analogue of the Riemann hypothesis in our setting.

Theorem 3.1. With the above notation, every ωi is an algebraic integer, and |ωi| = q1/2

for every i.

Remark 3.2. If we show that |ωi| ≤ q1/2 for every i, since the multiset {ω1, . . . , ω2g} is
invariant by the map x → q/x (see Remark 2.2) we conclude that we also have |ωi| ≥
q1/2, hence |ωi| = q1/2 for every i. The fact that the ωi are algebraic integers is clear:
since

∏2g
i=1(1 − ωit) = (1 − t)(1 − qt)Z(X, t) has integer coefficients, it follows that all

elementary symmetric functions sj = sj(ω1, . . . , ω2g) are integers, and ωi is a root of

t2g +
∑2j

j=1(−1)jsjt
2g−j.

Before proving Theorem 3.1 we make some general considerations that are very
useful in general when considering zeta functions of curves. Let Nm = |X(Fqm)|, and let
am ∈ Z be defined by

(9) Nm = 1− am + qm.

It follows from the definition of the zeta function and from (8) that
(10)∑
m≥1

Nm

m
tm =

2g∑
i=1

log(1− ωit)− log(1− t)− log(1− qt) =
∑
m≥1

1

m
·

(
1 + qm −

2g∑
i=1

ωm
i

)
tm,

hence am =
∑2g

i=1 ω
m
i for every m ≥ 1. The following lemma rephrases the condition in

Theorem 3.1 as an estimate for the integers am. This estimate, in fact, is responsible for
many of the applications of the Weil conjectures in the case of curves.

Lemma 3.3. With the above notation, we have |ωi| ≤ g1/2 for every i if and only if
|am| ≤ 2gqm/2 for every m ≥ 1.
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Proof. One implication is trivial: since am =
∑2g

i=1 ω
m
i , if |ωi| ≤ q1/2 for every i, it follows

that |am| ≤ 2gm/2. For the converse, note that

(11)
∑
m≥1

amt
m =

2g∑
i=1

∑
m≥1

ωm
i t

m =

2g∑
i=1

ωit

1− ωit
.

If |am| ≤ 2gqm/2 for all m, then for t ∈ C with |t| < q−1/2 we have

(12) |
∑
m≥1

amt
m| ≤ 2g

∑
m≥1

(q1/2|t|)m =
2gq1/2|t|

1− q1/2|t|
.

Note that (11) implies that the rational function
∑

m≥1 amt
r has a pole at t = 1/ωi. The

estimate in (12) implies that 1/|ωi| ≥ q−1/2, as required. �

We can now prove the main result of this section.

Proof of Theorem 3.1. As it follows from Remark 3.2 and Lemma 3.3, it is enough to show
that |Nm − (qm + 1)| ≤ 2gqm/2 for every m. In fact, if we prove this for m = 1, then we
may apply this to X ×SpecFq Spec Fqm in order to get the bound for |Nm − (qm + 1)|.

We recall the description of N1 given in Lecture 2, Proposition 2.4. Consider the
smooth projective surface S = X × X, where X = X ×SpecFq Spec Fq. We have two

divisors on S, the diagonal ∆ and the graph Γ of the morphism FrobX,q on X. The two
divisors intersect transversely, and the number of intersection points is (Γ ·∆) = |X(Fq)|.

It is an elementary consequence of the Hodge index theorem (see Proposition 3.4
below) that if `1 = X × pt and `2 = pt×X, then for every divisor D on S we have

(13) (D2) ≤ 2(D · `1) · (D · `2).
Let us apply this for D = a∆ + bΓ. Note that (∆ · `1) = (∆ · `2) = 1, while (Γ · `1) = q
and (Γ · `2) = 1.

We now compute (Γ2) and (∆2) via the adjunction formula. Note that the canonical
class KS on S is numerically equivalent to (2g − 2)(`1 + `2). Since both ∆ and Γ are
smooth curves of genus g, we have

2g − 2 = (∆ · (∆ +KS)) = (∆2) + 2(2g − 2),

2g − 2 = (Γ · (Γ +KS)) = (Γ2) + (q + 1)(2g − 2).

Therefore (∆2) = −(2g − 2) and (Γ2) = −q(2g − 2).

Applying (13) for D = a∆ + bΓ gives

−a2(2g − 2)− qb2(2g − 2) + 2abN1 ≤ 2(a+ bq)(a+ b).

After simplifying, we get

ga2 − ab(q + 1−N1) + gqb2 ≥ 0.

Since this holds for all integer (or rational) a and b, it follows that (q + 1−N1)
2 ≤ 4qg2.

Therefore |N1−(q+1)| ≤ 2gq1/2, as required. This completes the proof of Theorem 3.1. �
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The following proposition is [Har, Exercise V.1.9].

Proposition 3.4. Let C1 and C2 be smooth projective curves over an algebraically closed
field, and let S = C1 ×C2. If `1 = C1 × pt and `2 = pt×C2, then for every divisor D on
S we have

(D2) ≤ 2(D · `1)(D · `2).

Proof. Recall that the Hodge index theorem says that if E is a divisor on S such that
(E ·H) = 0, where H is ample, then (E2) ≤ 0 (see [Har, Theorem 1.9]).

We apply this result for the ample divisor H = `1 + `2, and for E = D− (b`1 + a`2),
where a = (D · `1) and b = (D · `2). Note that (E · H) = 0, hence (E2) ≤ 0. Since
(E2) = (D2)− 2ab, we get the assertion in the proposition. �

Example 3.5. Consider the case when X is an elliptic curve (that is, g = 1). In this case
it follows from Theorem 3.1 and Remark 2.2 that

Z(X, t) =
(1− αt)(1− βt)
(1− t)(1− qt)

=
1− at+ qt2

(1− t)(1− qt)
,

where |α| = |β| = q1/2, and a ∈ Z. Note that |X(Fqm)| = (1+qm)−2Re(αm). In particular,
a = (1 + q)− |X(Fq)|.
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