LECTURE 6. FULTON'S TRACE FORMULA FOR COHERENT SHEAF COHOMOLOGY

Our goal in this lecture is to give a proof, following [Ful2], of a trace formula for the Frobenius action on the cohomology of the structure sheaf.

1. The statement of the main theorem

Suppose that X is a scheme over the finite field $k = \mathbf{F}_q$. Recall that we have the q-Frobenius morphism $F = \operatorname{Frob}_{X,q} \colon X \to X$, whose corresponding morphism of sheaves $\mathcal{O}_X \to F_*(\mathcal{O}_X) = \mathcal{O}_X$ is given by $u \to u^q$. This is an \mathbf{F}_q -linear morphism, and therefore we get induced \mathbf{F}_q -linear actions $F \colon H^i(X, \mathcal{O}_X) \to H^i(X, \mathcal{O}_X)$.

Theorem 1.1. If X is a projective scheme over a finite field \mathbf{F}_{q} , then

(1)
$$|X(\mathbf{F}_q)| \mod p = \sum_{i=0}^{\dim(X)} (-1)^i \operatorname{trace}(F|H^i(X, \mathcal{O}_X)).$$

Remark 1.2. Note that we have $|X(\mathbf{F}_q)| = |X_{\text{red}}(\mathbf{F}_q)|$. However, it is not a priori clear that the term on the right-hand side of (1) only depends on the reduced scheme structure of X.

Remark 1.3. Given X as in the above theorem, let $X_m = X \times_{\text{Spec } \mathbf{F}_q} \text{Spec } \mathbf{F}_{q^m}$. Note that $\text{Frob}_{X_m,q^m} = \text{Frob}_{X,q}^m \times \text{Id}$, and we have a canonical isomorphism $H^i(X_m, \mathcal{O}_{X_m}) \simeq H^i(X, \mathcal{O}_X) \otimes_{\mathbf{F}_q} \mathbf{F}_{q^m}$. By applying the theorem for X_m , we get

$$|X(\mathbf{F}_{q^m})| \mod p = \sum_{i=0}^{\dim(X)} (-1)^i \operatorname{trace}(F^m | H^i(X, \mathcal{O}_X)).$$

Recall from Lecture 2 that we may identify $X(\mathbf{F}_q)$ with the closed points $x \in X$ with $k(x) = \mathbf{F}_q$. In what follows we will often make this identification without any further comment.

A stronger congruence formula was proved be Deligne [Del2] and Katz [Katz]. In fact, we will also prove a strengthening of the above statement, but in a different direction. The first extension is to sheave with a Frobenius action.

A coherent F-module on X is a coherent sheaf \mathcal{M} on X, together with a Frobenius action on \mathcal{M} , that is, a morphism of sheaves of \mathcal{O}_X -modules $F_{\mathcal{M}} \colon \mathcal{M} \to F_*(\mathcal{M})$. In other words, $F_{\mathcal{M}}$ is a morphism of sheaves of \mathbf{F}_q -vector spaces $\mathcal{O}_X \to \mathcal{O}_X$ such that $F_{\mathcal{M}}(am) =$ $a^q F_{\mathcal{M}}(m)$ for every $a \in \mathcal{O}_X(U)$ and $m \in \mathcal{M}(U)$, where U is any open subset of X. As above, since $F_{\mathcal{M}}$ is \mathbf{F}_q -linear, it follows that it induces \mathbf{F}_q -linear maps on cohomology that, abusing notation, we write $F_{\mathcal{M}} \colon H^i(X, \mathcal{M}) \to H^i(X, \mathcal{M})$. Despite the fact that $F_{\mathcal{M}}$ is not \mathcal{O}_X -linear, for every $x \in X(\mathbf{F}_q)$ we get an \mathbf{F}_q -linear endomorphism of $\mathcal{M}(x) := \mathcal{M}_x \otimes k(x)$, that we denote by $F_{\mathcal{M}}(x)$.

Theorem 1.4. If X is a projective scheme over \mathbf{F}_q , and $(\mathcal{M}, F_{\mathcal{M}})$ is a coherent F-module on X, we have

(2)
$$\sum_{x \in X(\mathbf{F}_q)} \operatorname{trace}(F_{\mathcal{M}}(x)) = \sum_{i=0}^{\dim(X)} (-1)^i \operatorname{trace}(F_{\mathcal{M}}|H^i(X,\mathcal{M})).$$

An obvious example of a coherent F-module on X is given by (\mathcal{O}_X, F) . Note that if $x \in X(\mathbf{F}_q)$, then F(x) is the identity on $\mathcal{O}_X(x) = \mathbf{F}_q$. Therefore the result in Theorem 1.1 is a special case of the one in Theorem 1.4.

In fact, Theorem 1.4 will follow from a result describing the Grothendieck group of coherent *F*-modues. Given a scheme *X* of finite type over \mathbf{F}_q , consider the category $\mathcal{C}oh_F(X)$ consisting of coherent *F*-modules. A morphism $(\mathcal{M}, F_{\mathcal{M}}) \to (\mathcal{M}', F_{\mathcal{M}'})$ in this category is a morphism $f: \mathcal{M} \to \mathcal{M}'$ of coherent sheaves, such that $f \circ F_{\mathcal{M}} = F_{\mathcal{M}'} \circ f$. It is easy to see that if *f* is a morphism of coherent *F*-modules, then $\operatorname{Ker}(f)$ and $\operatorname{Coker}(f)$ have induced Frobenius actions that makes them coherent *F*-modules. We thus see that $\mathcal{C}oh_F(X)$ is an abelian category. Whenever the Frobenius action is understood, we simply write \mathcal{M} instead of $(\mathcal{M}, F_{\mathcal{M}})$.

The Grothendieck group $K^F_{\bullet}(X)$ of coherent *F*-modules is the quotient of the free abelian group on isomorphism classes of coherent *F*-modules $(\mathcal{M}, F_{\mathcal{M}})$ as above, by the following type of relations:

(A)
$$(\mathcal{M}, F_{\mathcal{M}}) = (\mathcal{M}', F_{\mathcal{M}}) + (\mathcal{M}'', F_{\mathcal{M}''})$$
, for every exact sequence
 $0 \to (\mathcal{M}', F_{\mathcal{M}'}) \to (\mathcal{M}, F_{\mathcal{M}'}) \to (\mathcal{M}'', F_{\mathcal{M}''}) \to 0.$

(B) $(\mathcal{M}, F_1 + F_2) = (\mathcal{M}, F_1) + (\mathcal{M}, F_2)$ for every morphisms of \mathcal{O}_X -modules $F_1, F_2 \colon \mathcal{M} \to F_*(\mathcal{M})$, where \mathcal{M} is a coherent sheaf on X.

Given a coherent *F*-module $(\mathcal{M}, F_{\mathcal{M}})$, we denote by $[\mathcal{M}, F_{\mathcal{M}}]$ its class in the Grothendieck group. Note that $K^F_{\bullet}(X)$ is, in fact, an \mathbf{F}_q -vector space, with $\lambda \cdot [\mathcal{M}, F_{\mathcal{M}}] = [\mathcal{M}, \lambda F_{\mathcal{M}}]$.

Lemma 1.5. We have an isomorphism $K^F_{\bullet}(\operatorname{Spec} \mathbf{F}_q) \simeq \mathbf{F}_q$ of \mathbf{F}_q -vector spaces, given by

$$[\mathcal{M}, F_{\mathcal{M}}] \to \operatorname{trace}(F_{\mathcal{M}}(x)),$$

where x is the unique point of $\operatorname{Spec} \mathbf{F}_q$.

Proof. Note that $Coh_F(\operatorname{Spec} \mathbf{F}_q)$ is the category of pairs (V, φ) , where V is a finitedimensional vector space over \mathbf{F}_q , and φ is a linear endomorphism. Since $\operatorname{trace}(\varphi_1 + \varphi_2) = \operatorname{trace}(\varphi_1) + \operatorname{trace}(\varphi_2)$, and given an exact sequence $0 \to (V', \varphi') \to (V, \varphi) \to (V'', \varphi'') \to 0$ we have $\operatorname{trace}(\varphi) = \operatorname{trace}(\varphi') + \operatorname{trace}(\varphi'')$, taking (V, φ) to $\operatorname{trace}(\varphi)$ gives a morphism of \mathbf{F}_q -vector spaces $u: K^F_{\bullet}(\operatorname{Spec} \mathbf{F}_q) \to \mathbf{F}_q$. We have a map w in the opposite direction that takes $a \in \mathbf{F}_q$ to $[\mathbf{F}_q, a \cdot \operatorname{Id}]$. It is clear that $u \circ w$ is the identity. In order to show that u and w are inverse isomorphisms, it is enough to show that w is surjective. The fact that $[V, \varphi]$ lies in the image of w follows easily by induction on $\dim(V)$, since whenever $\dim(V) \ge 2$, φ can be written as a sum of maps, each of which has an invariant proper nonzero subspace.

If $f: X \to Y$ is a proper morphism, note that the higher direct images induce functors $R^i f_* \colon Coh_F(X) \to Coh_F(Y)$. Indeed, if $U \subseteq Y$ is an affine open subset of Y, and $(\mathcal{M}, F_{\mathcal{M}}) \in Coh_F(X)$, then $H^i(f^{-1}(U), \mathcal{M})$ has an endomorphism induced by $F_{\mathcal{M}}$, and these endomorphisms glue together to give the Frobenius action on $R^i f_*(\mathcal{M})$. As a consequence, we get a morphism of \mathbf{F}_q -vector spaces $f_* \colon K^F_{\bullet}(X) \to K^F_{\bullet}(Y)$ given by $f_*([\mathcal{M}]) = \sum_{i \geq 0} (-1)^i [R^i f_*(\mathcal{M})]$. Note that this is well-defined: if

$$0 \to (\mathcal{M}', F_{\mathcal{M}'}) \to (\mathcal{M}, F_{\mathcal{M}}) \to (\mathcal{M}'', F_{\mathcal{M}''}) \to 0$$

is an exact sequence of coherent F-modules, then the long exact sequence in cohomology

$$\ldots \to R^i f_*(\mathcal{M}') \to R^i f_*(\mathcal{M}) \to R^i f_*(\mathcal{M}'') \to R^{i+1} f_*(\mathcal{M}') \to \ldots$$

is compatible with the Frobenius actions, and therefore we get

$$\sum_{i\geq 0} (-1)^{i} [R^{i} f_{*}(\mathcal{M})] = \sum_{i\geq 0} (-1)^{i} [R^{i} f_{*}(\mathcal{M}')] + \sum_{i\geq 0} (-1)^{i} [R^{i} f_{*}(\mathcal{M}'')] \text{ in } K_{\bullet}^{F}(Y).$$

The compatibility with the type (B) relations is straightforward, hence $f_* \colon K^F_{\bullet}(X) \to K^F_{\bullet}(Y)$ is well-defined.

Exercise 1.6. Use the Leray spectral sequence to show that if $g: Y \to Z$ is another proper morphism, then we have $(g \circ f)_* = g_* \circ f_* \colon K^F_{\bullet}(X) \to K^F_{\bullet}(Z)$.

In fact, we will only use the assertion in the above exercise when f is a closed immersion, in which case everything is clear since $R^i g_* \circ f_* = R^i (g \circ f)_*$ for all $i \ge 0$, and $R^j f_* = 0$ for all $j \ge 1$. The proof of the next lemma is straightforward.

Lemma 1.7. If X is the disjoint union of the subschemes X_1, \ldots, X_r , then the inclusions $X_i \hookrightarrow X$ induce an isomorphism

$$\bigoplus_{i=1} K^F_{\bullet}(X_i) \simeq K^F_{\bullet}(X).$$

The following is the main result of this lecture. For a scheme X, we consider $X(\mathbf{F}_q)$ as a closed subscheme of X, with the reduced scheme structure. Note that by Lemmas 1.5 and 1.7, we have an isomorphism $K^F_{\bullet}(X(\mathbf{F}_q)) \simeq \bigoplus_{x \in X(\mathbf{F}_q)} \mathbf{F}_q(x)$, and we denote by $\langle x \rangle \in K^F_{\bullet}(X(\mathbf{F}_q))$ the element corresponding to $1 \in \mathbf{F}_q(x)$.

Theorem 1.8. (Localization Theorem) For every projective scheme X over \mathbf{F}_q , the inclusion $\iota: X(\mathbf{F}_q) \hookrightarrow X$ induces an isomorphism $K^F_{\bullet}(X(\mathbf{F}_q)) \simeq K^F_{\bullet}(X)$. Its inverse is given by $t: K^F_{\bullet}(X) \to K^F_{\bullet}(X(\mathbf{F}_q))$,

$$t([\mathcal{M}, F_{\mathcal{M}}]) = \sum_{x \in X(\mathbf{F}_q)} \operatorname{trace}(F_{\mathcal{M}}(x)) \langle x \rangle.$$

Let us see that this gives Theorem 1.4.

Proof of Theorem 1.4. Consider the structure morphism $f: X \to \operatorname{Spec} \mathbf{F}_q$. Let $\langle \mathrm{pt} \rangle$ denote the element of $K^F_{\bullet}(\operatorname{Spec} \mathbf{F}_q)$ that corresponds to $1 \in \mathbf{F}_q$ via the isomorphism given by Lemma 1.5. By definition, for every $[\mathcal{M}, F_{\mathcal{M}}] \in K^F_{\bullet}(X)$, we have

$$f_*([\mathcal{M}, F_{\mathcal{M}}]) = \left(\sum_{i=0}^{\dim(X)} (-1)^i \operatorname{trace}(F_{\mathcal{M}} | H^i(X, \mathcal{M}))\right) \langle \operatorname{pt} \rangle.$$

On the other hand, if we apply the isomorphism t in Theorem 1.8, we have

$$u := t([\mathcal{M}, F_{\mathcal{M}}]) = \sum_{x \in X(\mathbf{F}_q)} \operatorname{trace}(F_{\mathcal{M}}(x)) \langle x \rangle.$$

If $\iota: X(\mathbf{F}_q) \to X$ is the inclusion, then it is clear that

$$f_*\left(\iota_*\left(\sum_{x\in X(\mathbf{F}_q)}m_x\langle x\rangle\right)\right) = \left(\sum_{x\in X(\mathbf{F}_q)}m_x\right)\langle \mathrm{pt}\rangle.$$

In particular, we have $f_* \circ \iota_*(u) = \left(\sum_{x \in X(\mathbf{F}_q)} \operatorname{trace}(F_{\mathcal{M}}(x))\right) \langle \operatorname{pt} \rangle$. Since t and ι are inverse to each other, the assertion in Theorem 1.4 follows.

Remark 1.9. In fact, Theorem 1.8 is proved in [Ful2] also for arbitrary schemes of finite type over \mathbf{F}_q . In particular, Theorems 1.1 and 1.4 also hold if X is only assumed to be complete.

2. The proof of the Localization Theorem

We start with a few lemmas.

Lemma 2.1. For every scheme X, and every coherent sheaf on X with Frobenius action $(\mathcal{M}, F_{\mathcal{M}})$ such that $F_{\mathcal{M}}$ is nilpotent, we have $[\mathcal{M}, F_{\mathcal{M}}] = 0$ in $K_{\bullet}^{F}(X)$.

Proof. We prove the assertion by induction on m such that $\varphi^m = 0$. If m = 1, it is enough to use relation (B) in the definition of $K^F_{\bullet}(X)$, that gives $[\mathcal{M}, 0] = [\mathcal{M}, 0] + [\mathcal{M}, 0]$. If $m \geq 2$, and $\mathcal{M}' = \text{Ker}(F_{\mathcal{M}})$, then \mathcal{M}' is a coherent \mathcal{O}_X -submodule of \mathcal{M} , and we have an exact sequence of coherent sheaves with Frobenius action

$$0 \to (\mathcal{M}', F_{\mathcal{M}'}) \to (\mathcal{M}, F_{\mathcal{M}}) \to (\mathcal{M}'', F_{\mathcal{M}''}) \to 0.$$

This gives $[\mathcal{M}, F_{\mathcal{M}}] = [\mathcal{M}', F_{\mathcal{M}'}] + [\mathcal{M}'', F_{\mathcal{M}''}]$. Since $F_{\mathcal{M}'} = 0$ and $F_{\mathcal{M}''}^{m-1} = 0$, it follows by the induction hypothesis that $[\mathcal{M}', F_{\mathcal{M}'}] = 0 = [\mathcal{M}'', F_{\mathcal{M}''}]$. Therefore $[\mathcal{M}, F_{\mathcal{M}}] = 0$. \Box

Lemma 2.2. If $j: X \hookrightarrow Y$ is a closed embedding, then we have a morphism of \mathbf{F}_q -vector spaces $j^*: K^F_{\bullet}(Y) \to K^F_{\bullet}(X)$ given by $j^*([\mathcal{M}, F_{\mathcal{M}}]) = [\mathcal{M} \otimes_{\mathcal{O}_Y} \mathcal{O}_X, \overline{F_{\mathcal{M}}}]$, where $\overline{F_{\mathcal{M}}}$ is the Frobenius action induced by $F_{\mathcal{M}}$ on $\mathcal{M} \otimes_{\mathcal{O}_Y} \mathcal{O}_X$. In particular, the composition $j^* \circ j_*$ is the identity on $K^F_{\bullet}(X)$.

Proof. Let \mathcal{I} be the ideal defining X in Y. Since $F_{\mathcal{M}}(\mathcal{IM}) \subseteq \mathcal{I}^q \mathcal{M}$, it follows that $F_{\mathcal{M}}$ indeed induces a Frobenius action $\overline{F_{\mathcal{M}}}$ on \mathcal{M}/\mathcal{IM} . We have $\overline{F_1 + F_2} = \overline{F_1} + \overline{F_2}$, hence

in order to show that we have an induced morphism $K^F_{\bullet}(Y) \to K^F_{\bullet}(X)$, we only need to show that if

 $0 \to (\mathcal{M}', F_{\mathcal{M}'}) \to (\mathcal{M}, F_{\mathcal{M}}) \to (\mathcal{M}'', F_{\mathcal{M}''}) \to 0$

is an exact sequence of coherent F-modules on Y, then

$$[\mathcal{M}/\mathcal{I}\mathcal{M}] = [\mathcal{M}'/\mathcal{I}\mathcal{M}'] + [\mathcal{M}''/\mathcal{I}\mathcal{M}'']$$

in $K^F_{\bullet}(X)$. Note that we have an exact sequence of coherent F-modules on X

$$0 \to \mathcal{M}'/\mathcal{M}' \cap \mathcal{I}\mathcal{M} \to \mathcal{M}/\mathcal{I}\mathcal{M} \to \mathcal{M}''/\mathcal{I}\mathcal{M}'' \to 0,$$

and a surjection $\mathcal{M}'/\mathcal{I}\mathcal{M}' \to \mathcal{M}'/\mathcal{M}' \cap \mathcal{I}\mathcal{M}$, with kernel $\mathcal{M}' \cap \mathcal{I}\mathcal{M}/\mathcal{I}\mathcal{M}'$. In light of Lemma 2.1, it is enough to show that the Frobenius action on $\mathcal{M}' \cap \mathcal{I}\mathcal{M}/\mathcal{I}\mathcal{M}'$ is nilpotent. Since $F_{\mathcal{M}}^m(\mathcal{I}\mathcal{M}) \subseteq \mathcal{I}^{q^m}(\mathcal{M})$, we see that $\mathcal{M}' \cap F_{\mathcal{M}}^m(\mathcal{I}\mathcal{M}) \subseteq \mathcal{I}\mathcal{M}'$ for $m \gg 0$ by Artin-Rees. This shows that j^* is well-defined, and the fact that $j^* \circ j_*$ is the identity follows from definition.

Note that if X is any scheme, and we consider $j: X(\mathbf{F}_q) \hookrightarrow X$, then j^* is the morphism t in Theorem 1.8. Since $j^* \circ j_*$ is the identity, in order to prove Theorem 1.8 for a projective scheme X, it is enough to show that $j_* \circ j^*$ is the identity on $K^F_{\bullet}(X)$. In fact, it is enough to show that j_* is surjective.

Lemma 2.3. If (\mathcal{M}, φ) is a coherent \mathcal{O}_X -module with a Frobenius action, and \mathcal{M} decomposes as $\mathcal{M} = \mathcal{M}_1 \oplus \ldots \oplus \mathcal{M}_r$, and if $\varphi_{i,j}$ is the composition $\mathcal{M}_i \to \mathcal{M} \xrightarrow{\varphi} \mathcal{M} \to \mathcal{M}_j$, then $[\mathcal{M}, \varphi] = \sum_{i=1}^r [\mathcal{M}_i, \varphi_{i,i}]$ in $K^F_{\bullet}(X)$.

Proof. Let $\widetilde{\varphi}_{i,j} \colon \mathcal{M} \to \mathcal{M}$ be the map induced by $\varphi_{i,j}$, so that $\varphi = \sum_{i,j} \widetilde{\varphi}_{i,j}$. By condition (B) we have $[\mathcal{M}, \varphi] = \sum_{i,j} [\mathcal{M}, \widetilde{\varphi}_{i,j}]$. For every $i \neq j$ we have $\widetilde{\varphi}_{i,j}^2 = 0$, hence $[\mathcal{M}, \widetilde{\varphi}_{i,j}] = 0$ by Lemma 2.1. Therefore

$$[\mathcal{M},\varphi] = \sum_{i=1}^{r} [\mathcal{M},\widetilde{\varphi}_{i,i}] = \sum_{i=1}^{r} [\mathcal{M}_{i},\varphi_{i,i}]$$

by condition (A).

The key ingredient in the proof of Theorem 1.8 is provided by the case $X = \mathbf{P}_{\mathbf{F}_q}^n$. We now turn to the description of $K^F_{\bullet}(\mathbf{P}_{\mathbf{F}_q}^n)$. We will use the Serre correspondence between coherent sheaves on $\mathbf{P}_{\mathbf{F}_q}^n$ and finitely generated graded modules over $S = \mathbf{F}_q[x_0, \ldots, x_n]$.

Suppose that \mathcal{M} is a coherent sheaf on $\mathbf{P}_{\mathbf{F}_q}^n$ with a Frobenius action $F_{\mathcal{M}} \colon \mathcal{M} \to F_*(\mathcal{M})$. This induces for every *i* a morphism

$$\mathcal{M}(i) \to F_*(\mathcal{M}) \otimes \mathcal{O}(i) \to F_*(\mathcal{M}(qi)),$$

where we used the projection formula, and the fact that for every line bundle L we have $F^*(L) \simeq L^q$. It follows that if $M = \Gamma_*(\mathcal{M}) := \bigoplus_{i \ge 0} \Gamma(\mathbf{P}^n_{\mathbf{F}_q}, \mathcal{M}(i))$, then we get a graded Frobenius action on M: this is an \mathbf{F}_q -linear map $F_M \colon M \to M$ such that $F_M(M_i) \subseteq M_{qi}$ and $F_M(au) = a^q F_M(u)$ for $a \in S$ and $u \in M$.

Conversely, given a finitely generated graded S-module M with a graded Frobenius action F_M , we get an induced coherent F-module structure on \widetilde{M} , as follows. If $U_i \subset \mathbf{P}_{\mathbf{F}_a}^n$

is the open subset defined by $x_i \neq 0$, then $\Gamma(U_i, \widetilde{M}) = (M_{x_i})_0$, and $F_{\widetilde{M}}\left(\frac{u}{x_i^N}\right) = \frac{F_M(u)}{x_i^{q_N}}$ for every $u \in M_N$. It is straightforward to check that this gives a Frobenius action on \widetilde{M} . If $(\mathcal{M}, F_{\mathcal{M}})$ is a coherent *F*-module and $M = \Gamma_*(\mathcal{M})$, with the graded Frobenius action described above, then we have an isomorphism of graded *F*-modules $\mathcal{F} \simeq \widetilde{M}$.

If M = S(-i), then giving a graded Frobenius action F_M on M, is equivalent to giving $f = F_M(1) \in S_{(q-1)i}$. In particular, if i < 0, then the only graded Frobenius action on S(-i) is the zero one. For an arbitrary finitely generated graded S-module M, we consider a graded free resolution of M

$$0 \to F_n \to \ldots \to F_1 \to F_0 \to M \to 0,$$

where each F_j is a direct sum of of S-modules of the form $S(-b_{i,j})$, with $b_{i,j} \in \mathbb{Z}$. If we have a graded Frobenius action on M, then we can put graded Frobenius actions on each F_i , such that the above exact sequence is compatible with the graded Frobenius actions. In particular, we get $[\widetilde{M}] = \sum_{i=0}^{n} (-1)^i [\widetilde{F}_i]$ in $K^F_{\bullet}(\mathbf{P}^n_{\mathbf{F}_q})$. It follows from the above discussion and Lemma 2.3 that $K^F_{\bullet}(\mathbf{P}^n_{\mathbf{F}_q})$ is generated (as an \mathbf{F}_q -vector space) by $[\mathcal{O}(-i), x_0^{a_0} \cdots x_n^{a_n}]$, where $a_\ell \geq 0$ and $\sum_{\ell=0}^{n} a_\ell = i(q-1)$.

Proposition 2.4. The \mathbf{F}_q -vector space $K^F_{\bullet}(\mathbf{P}^n_{\mathbf{F}_q})$ is generated by $[\mathcal{O}(-i), x_0^{a_0} \cdots x_n^{a_n}]$, with $0 \le a_\ell \le q-1$ for all ℓ , with some $a_\ell < q-1$, and where $\sum_{\ell=0}^n a_\ell = i(q-1)$.

Proof. Let us show first that $K^F_{\mathbf{F}_q}(\mathbf{P}^n_{\mathbf{F}_q})$ is generated by $[\mathcal{O}(-i), x_0^{a_0} \cdots x_n^{a_n}]$, with $0 \le a_\ell \le q-1$ for all ℓ , and with $\sum_{\ell=0}^n a_\ell = i(q-1)$. In light of the discussion preceding the proposition, it is enough to show the following: if u is a monomial such that $u = x_i^q w$, then $[\mathcal{O}(-i), u] = [\mathcal{O}(-i+1), x_i w]$ in $K^F_{\bullet}(\mathbf{P}^n_{\mathbf{F}_q})$. If H is the hyperplane in $\mathbf{P}^n_{\mathbf{F}_q}$ defined by $(x_i = 0)$, we have an exact sequence of coherent sheaves with Frobenius action

$$0 \to \mathcal{O}(-i) \xrightarrow{:x_i} \mathcal{O}(-i+1) \to \mathcal{O}_H(-i+1) \to 0,$$

where the Frobenius actions on $\mathcal{O}(-i)$ and $\mathcal{O}(-i+1)$ are defined by u and $x_i w$, respectively. Since $x_i w$ restricts to zero on H, it follows that the Frobenius action on $\mathcal{O}_H(-i+1)$ is zero, and we conclude from the above exact sequence that $[\mathcal{O}(-i), u] = [\mathcal{O}(-i+1), x_i w]$.

In order to complete the proof of the proposition, it is enough to show that we can write $[\mathcal{O}(-(n+1)), (x_0 \cdots x_n)^{q-1}]$ in terms of the remaining elements of the above system of generators. In order to do this, let us consider the Koszul complex on $\mathbf{P}_{\mathbf{F}_q}^n$ corresponding to the global sections x_0, \ldots, x_n of $\mathcal{O}(1)$:

$$0 \to \mathcal{E}_{n+1} \to \ldots \to \mathcal{E}_1 = \mathcal{O}(-1)^{\oplus (n+1)} \stackrel{h}{\to} \mathcal{E}_0 = \mathcal{O}_{\mathbf{P}_{\mathbf{F}_q}^n} \to 0,$$

where $h = (x_0, \ldots, x_n)$. Using the above decomposition $\mathcal{E}_1 = L_0 \oplus \ldots \oplus L_n$, then

$$\mathcal{E}_r = \bigoplus_{0 \le i_1 < \ldots < i_r \le n} (L_{i_1} \otimes \ldots \otimes L_{i_r}) \simeq \mathcal{O}(-r)^{\binom{n+1}{r}}$$

If on the factor $L_{i_1} \otimes \ldots \otimes L_{i_r}$ of \mathcal{E}_r we consider the *F*-module structure given by the monomial $x_{i_1}^{q-1} \cdots x_{i_r}^{q-1}$, then the above complex becomes a complex of *F*-modules. We

deduce that in $K^F(\mathbf{P}^n_{\mathbf{F}_a})$ we have the following relation:

$$\sum_{r=0}^{n+1} (-1)^r \sum_{0 \le i_1 < \dots < i_r \le n} [\mathcal{O}(-r), x_{i_1}^{q-1} \cdots x_{i_r}^{q-1}] = 0,$$

which completes the proof of the proposition.

Corollary 2.5. The assertion in Theorem 1.8 holds when $X = \mathbf{P}_{\mathbf{F}_a}^n$.

Proof. As we have seen, if $j: \mathbf{P}^n(\mathbf{F}_q) \hookrightarrow \mathbf{P}^n_{\mathbf{F}_q}$ is the inclusion, then j_* is injective, and it is enough to show that it is surjective. Proposition 2.4 implies that $\dim_{\mathbf{F}_q} K^F_{\bullet}(\mathbf{P}^n_{\mathbf{F}_q}) \leq \alpha_n - 1$, where

$$\alpha_n := |\{(a_0, \dots, a_n) \mid 0 \le a_i \le q - 1, (q - 1) \text{ divides } \sum_{i=0}^n a_i\}|.$$

Suppose we have (a_0, \ldots, a_{n-1}) with $0 \le a_\ell \le q-1$ for $0 \le \ell \le n-1$, and we want to choose a_n with $0 \le a_n \le q-1$ such that $\sum_{\ell=0}^n a_\ell$ is divisible by (q-1). If $\sum_{\ell=0}^{n-1} a_\ell$ is divisible by (q-1), then we may take $a_n = 0$ or $a_n = q-1$; if $\sum_{\ell=0}^{n-1} a_\ell$ is not divisible by (q-1), then we have precisely one choice for a_n . Therefore $\alpha_n = 2\alpha_{n-1} + (q^n - \alpha_{n-1}) = q^n + \alpha_{n-1}$. Since $\alpha_0 = 2$, we conclude that $\alpha_n = (1 + q + \ldots + q^n) + 1$.

Therefore $\dim_{\mathbf{F}_q} K^F_{\bullet}(\mathbf{P}^n_{\mathbf{F}_q}) \leq |\mathbf{P}^n(\mathbf{F}_q)| = \dim_{\mathbf{F}_q} K^F_{\bullet}(\mathbf{P}^n(\mathbf{F}_q))$. Since j_* is injective, it follows that j_* is also surjective, completing the proof.

Proof of Theorem 1.8. Let us fix a closed immersion $j: X \hookrightarrow Y = \mathbf{P}_{\mathbf{F}_q}^n$. By Corollary 2.5, it is enough to show that if Theorem 1.8 holds for Y, then it also holds for X.

Consider the following commutative diagram:

in which all maps are closed immersions. As we have already mentioned, in order to prove Theorem 1.8 for X, it is enough to show that $\iota_* \circ \iota^*$ is the identity on $K^F_{\bullet}(X)$. Since the theorem holds for Y, we know that $\iota'_* \circ (\iota')^*$ is the identity on $K^F_{\bullet}(Y)$.

Note that $j'_* \circ \iota^* = (\iota')^* \circ j_*$: this is an immediate consequence of the definitions. Therefore

(4)
$$j_* \circ \iota_* \circ \iota^* = (\iota')_* \circ j'_* \circ \iota^* = \iota'_* \circ (\iota')^* \circ j_* = j_*.$$

On the other hand, Lemma 2.2 implies that $j^* \circ j_*$ is the identity on $K^F_{\bullet}(X)$. In particular, j_* is injective. We conclude from (4) that $\iota_* \circ \iota^*$ is the identity on $K^F_{\bullet}(X)$, and this completes the proof of the theorem.

3. Supersingular Calabi-Yau hypersurfaces

As an application of Theorem 1.1, we discuss a characterization of supersingular Calabi-Yau hypersurfaces. More generally, we prove the following

Proposition 3.1. Let $f \in \mathbf{F}_q[x_0, \ldots, x_n]$ be a homogeneous polynomial of degree n + 1, with $n \ge 2$, defining the hypersurface $Z \subset \mathbf{P}^n$. The following are equivalent:

- i) The action induced by the Frobenius morphism on $H^{n-1}(Z, \mathcal{O}_Z)$ is bijective (equivalently, it is nonzero).
- ii) $|Z(\mathbf{F}_q)| \not\equiv 1 \pmod{p}$.
- iii) The coefficient of $(x_0 \cdots x_n)^{q-1}$ in f^{q-1} is nonzero.
- iv) The coefficient of $(x_0 \cdots x_n)^{p-1}$ in f^{p-1} is nonzero.

If Z as above is a smooth hypersurface, then it is *ordinary* if it satisfies the above equivalent conditions. Otherwise, it is *supersingular*.

Proof. Since Z is a hypersurface of degree (n + 1) in \mathbf{P}^n , we have an exact sequence

(5)
$$0 \to \mathcal{O}_{\mathbf{P}^n}(-n-1) \xrightarrow{\cdot f} \mathcal{O}_{\mathbf{P}^n} \to \mathcal{O}_Z \to 0$$

This gives $H^i(Z, \mathcal{O}_Z) = 0$ for $1 \leq i \leq n-2$, and $H^0(Z, \mathcal{O}_Z) \simeq \mathbf{F}_q \simeq H^{n-1}(Z, \mathcal{O}_Z)$. Frobenius acts on $H^0(Z, \mathcal{O}_Z)$ as the identity, and if it acts as multiplication by $\lambda \in \mathbf{F}_q$ on $H^{n-1}(Z, \mathcal{O}_Z)$, then Theorem 1.1 gives

$$|Z(\mathbf{F}_q)| \mod p = 1 + (-1)^{n-1}\lambda.$$

Therefore $\lambda = 0$ if and only if $|Z(\mathbf{F}_q)| \equiv 1 \pmod{p}$. This proves i) \Leftrightarrow ii).

In order to prove that iii) and iv) are equivalent, note first that for every $r \ge 1$, we may uniquely write

(6)
$$f^{p^r-1} = c_r (x_0 \cdots x_n)^{p^r-1} + u_r,$$

where $u_r \in (x_0^{p^r}, \ldots, x_n^{p^r})$. If we raise to the p^{th} -power in (6), we get

$$f^{p^{r+1}-p} = c_r^p (x_0 \cdots x_n)^{p^{r+1}-p} + u_r^p.$$

Since $u_r^p \in (x_0^{p^{r+1}}, ..., x_n^{p^{r+1}})$ and

$$(x_0 \cdots x_n)^{p^{r+1}-p} \cdot (x_0^p, \dots, x_n^p) \subseteq (x_0^{p^{r+1}}, \dots, x_n^{p^{r+1}}),$$

we deduce that

$$f^{p^{r+1}} - c_r^p c_1 (x_0 \cdots x_n)^{p^{r+1}-1} \in (x_0^{p^{r+1}}, \dots, x_n^{p^{r+1}})$$

Therefore $c_{r+1} = c_r^p c_1$, which immediately gives that $c_r = c_1^{1+p+\dots p^{r-1}}$ for every $r \ge 1$. In particular, if $q = p^e$, we see that $c_1 \ne 0$ if and only if $c_e \ne 0$, hence iii) \Leftrightarrow iv).

In order to prove the equivalence of i) and iii), we consider the explicit description of the Frobenius action F on $H^{n-1}(Z, \mathcal{O}_Z)$ via the isomorphism $\delta \colon H^{n-1}(Z, \mathcal{O}_Z) \to H^n(\mathbf{P}^n, \mathcal{O}_{\mathbf{P}^n}(-n-1))$ induced by (5). We compute the cohomology of $\mathcal{O}_{\mathbf{P}^n}(-n-1)$ and

of \mathcal{O}_Z as Cech cohomology with respect to the affine cover of \mathbf{P}^n by the open subsets $(x_i \neq 0)$. Recall that

$$H^{n}(\mathbf{P}^{n}, \mathcal{O}_{\mathbf{P}^{n}}(-n-1)) \simeq (S_{x_{0}\cdots x_{n}})_{-n-1} / \sum_{i=0}^{n} (S_{x_{0}\cdots \widehat{x_{i}}\cdots x_{n}})_{-n-1} = \mathbf{F}_{q} \cdot \frac{1}{x_{0}\cdots x_{n}}.$$

Suppose that $u \in H^{n-1}(Z, \mathcal{O}_Z)$ is represented by the Cech cocyle $h = (\overline{h_0}, \ldots, \overline{h_n}) \in \bigoplus_{i=0}^n ((S/f)_{x_0 \cdots \widehat{x_i} \cdots x_n})_0$. If $h_i \in (S_{x_0 \cdots \widehat{x_i} \cdots x_n})_0$ is a lift of $\overline{h_i}$, then $\delta(u)$ is represented by the unique $w \in (S_{x_0 \cdots x_n})_{-n-1}$ such that $fw = \sum_{i=0}^n (-1)^i h_i$.

On the other hand, F(u) is represented by $(\overline{h_0}^q, \ldots, \overline{h_n}^q)$. Since we have $f(f^{q-1}w^q) = \sum_{i=0}^n (-1)^i h_i^q$, it follows that via the isomorphism δ , we can describe F as the linear map on $(S_{x_0 \cdots x_n})_{-n-1} / \sum_{i=0}^n (S_{x_0 \cdots \hat{x_i} \cdots x_n})_{-n-1}$ induced by $w \to f^{q-1}w^q$. This map multiplies the class of $\frac{1}{x_0 \cdots x_n}$ in this quotient by the coefficient of $(x_0 \cdots x_n)^{q-1}$ in f^{q-1} . This completes the proof of ii) \Leftrightarrow iii), hence the proof of the proposition.

Remark 3.2. In the context of Proposition 3.1, note that if $\operatorname{trace}(F \mid H^{n-1}(Z, \mathcal{O}_Z)) = 1 + (-1)^{n-1}a$, then for every $r \geq 1$ we have $1 + (-1)^{n-1}a^r = |Z(\mathbf{F}_{q^r})| \mod p$. This is a consequence of Theorem 1.1 (see also Remark 1.3).

Exercise 3.3. Give a direct proof for the implication ii) \Leftrightarrow iii) in Proposition 3.1 by computing $\sum_{a \in \mathbf{F}_{a}^{n+1}} f(a)^{q-1}$ (see [Knu]).

Exercise 3.4. Show that if X is an elliptic curve (that is, X is a smooth, geometrically connected, projective curve of genus 1) over \mathbf{F}_p , with $p \neq 2, 3$, then X is supersingular if and only if $|X(\mathbf{F}_p)| = p + 1$.

Exercise 3.5. Let $Z \subset \mathbf{P}_{\mathbf{F}_q}^n$ be a complete intersection subscheme of codimension r, defined by (F_1, \ldots, F_r) . Let $d_i = \deg(F_i)$, and assume that $\sum_i d_i = n + 1$. Show that the following are equivalent:

- i) The action induced by the Frobenius morphism on the cohomology group $H^{n-r}(Z, \mathcal{O}_Z)$ is bijective (equivalently, it is nonzero).
- ii) $|Z(\mathbf{F}_q)| \not\equiv 1 \pmod{p}$.
- iii) The polynomial $F_1 \cdots F_r$ satisfies the equivalent conditions in Proposition 3.1.

References

- [Del2] P. Deligne, Fonctions L modulo ℓ^n et modulo p, in Cohomologie Étale (SGA 41/2), Lecture Notes in Mathematics 569, 110–128, Springer-Verlag, Berlin-Heidelberg-New York, 1977. 1
- [Ful2] W. Fulton, A fixed point formula for varieties over finite fields, Math. Scand. 42 (1978), 189–196. 1, 4
- [Katz] N. Katz, Une formule de congruence pour la fonction ζ, Exposé XXII, in Groupes de Monodromie en Géometrie Algébrique (SGA 7 II), Lecture Notes in Mathematics 340, 401–438, Springer-Verlag, Berlin-Heidelberg-New York, 1973. 1
- [Knu] A. Knutson, Frobenius splitting, point counting, and degenerations, arXiv:0911.4941. 9