
LECTURE 6. FULTON’S TRACE FORMULA FOR COHERENT SHEAF
COHOMOLOGY

Our goal in this lecture is to give a proof, following [Ful2], of a trace formula for the
Frobenius action on the cohomology of the structure sheaf.

1. The statement of the main theorem

Suppose that X is a scheme over the finite field k = Fq. Recall that we have the
q-Frobenius morphism F = FrobX,q : X → X, whose corresponding morphism of sheaves
OX → F∗(OX) = OX is given by u → uq. This is an Fq-linear morphism, and therefore
we get induced Fq-linear actions F : H i(X,OX)→ H i(X,OX).

Theorem 1.1. If X is a projective scheme over a finite field Fq, then

(1) |X(Fq)|mod p =

dim(X)∑
i=0

(−1)itrace(F |H i(X,OX)).

Remark 1.2. Note that we have |X(Fq)| = |Xred(Fq)|. However, it is not a priori clear
that the term on the right-hand side of (1) only depends on the reduced scheme structure
of X.

Remark 1.3. Given X as in the above theorem, let Xm = X ×SpecFq SpecFqm . Note
that FrobXm,qm = FrobmX,q × Id, and we have a canonical isomorphism H i(Xm,OXm) '
H i(X,OX)⊗Fq Fqm . By applying the theorem for Xm, we get

|X(Fqm)|mod p =

dim(X)∑
i=0

(−1)itrace(Fm|H i(X,OX)).

Recall from Lecture 2 that we may identify X(Fq) with the closed points x ∈ X
with k(x) = Fq. In what follows we will often make this identification without any further
comment.

A stronger congruence formula was proved be Deligne [Del2] and Katz [Katz]. In
fact, we will also prove a strengthening of the above statement, but in a different direction.
The first extension is to sheaves with a Frobenius action.

A coherent F -module on X is a coherent sheafM on X, together with a Frobenius
action onM, that is, a morphism of sheaves of OX-modules FM : M→ F∗(M). In other
words, FM is a morphism of sheaves of Fq-vector spaces OX → OX such that FM(am) =
aqFM(m) for every a ∈ OX(U) and m ∈ M(U), where U is any open subset of X. As
above, since FM is Fq-linear, it follows that it induces Fq-linear maps on cohomology that,
abusing notation, we write FM : H i(X,M)→ H i(X,M). Despite the fact that FM is not
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OX-linear, for every x ∈ X(Fq) we get an Fq-linear endomorphism ofM(x) :=Mx⊗k(x),
that we denote by FM(x).

Theorem 1.4. If X is a projective scheme over Fq, and (M, FM) is a coherent F -module
on X, we have

(2)
∑

x∈X(Fq)

trace(FM(x)) =

dim(X)∑
i=0

(−1)itrace(FM|H i(X,M)).

An obvious example of a coherent F -module on X is given by (OX , F ). Note that if
x ∈ X(Fq), then F (x) is the identity on OX(x) = Fq. Therefore the result in Theorem 1.1
is a special case of the one in Theorem 1.4.

In fact, Theorem 1.4 will follow from a result describing the Grothendieck group
of coherent F -modues. Given a scheme X of finite type over Fq, consider the category
CohF (X) consisting of coherent F -modules. A morphism (M, FM) → (M′, FM′) in this
category is a morphism f : M→M′ of coherent sheaves, such that f ◦FM = FM′ ◦ f . It
is easy to see that if f is a morphism of coherent F -modules, then Ker(f) and Coker(f)
have induced Frobenius actions that makes them coherent F -modules. We thus see that
CohF (X) is an abelian category. Whenever the Frobenius action is understood, we simply
write M instead of (M, FM).

The Grothendieck group KF
• (X) of coherent F -modules is the quotient of the free

abelian group on isomorphism classes of coherent F -modules (M, FM) as above, by the
following type of relations:

(A) (M, FM) = (M′, FM) + (M′′, FM′′), for every exact sequence

0→ (M′, FM′)→ (M, FM′)→ (M′′, FM′′)→ 0.

(B) (M, F1+F2) = (M, F1)+(M, F2) for every morphisms ofOX-modules F1, F2 : M→
F∗(M), where M is a coherent sheaf on X.

Given a coherent F -module (M, FM), we denote by [M, FM] its class in the Grothendieck
group. Note that KF

• (X) is, in fact, an Fq-vector space, with λ · [M, FM] = [M, λFM].

Lemma 1.5. We have an isomorphism KF
• (SpecFq) ' Fq of Fq-vector spaces, given by

[M, FM]→ trace(FM(x)),

where x is the unique point of SpecFq.

Proof. Note that CohF (SpecFq) is the category of pairs (V, ϕ), where V is a finite-
dimensional vector space over Fq, and ϕ is a linear endomorphism. Since trace(ϕ1 +ϕ2) =
trace(ϕ1) + trace(ϕ2), and given an exact sequence 0→ (V ′, ϕ′)→ (V, ϕ)→ (V ′′, ϕ′′)→ 0
we have trace(ϕ) = trace(ϕ′) + trace(ϕ′′), taking (V, ϕ) to trace(ϕ) gives a morphism of
Fq-vector spaces u : KF

• (SpecFq)→ Fq. We have a map w in the opposite direction that
takes a ∈ Fq to [Fq, a · Id]. It is clear that u ◦ w is the identity. In order to show that
u and w are inverse isomorphisms, it is enough to show that w is surjective. The fact
that [V, ϕ] lies in the image of w follows easily by induction on dim(V ), since whenever
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dim(V ) ≥ 2, ϕ can be written as a sum of maps, each of which has an invariant proper
nonzero subspace. �

If f : X → Y is a proper morphism, note that the higher direct images induce
functors Rif∗ : CohF (X) → CohF (Y ). Indeed, if U ⊆ Y is an affine open subset of Y ,
and (M, FM) ∈ CohF (X), then H i(f−1(U),M) has an endomorphism induced by FM,
and these endomorphisms glue together to give the Frobenius action on Rif∗(M). As
a consequence, we get a morphism of Fq-vector spaces f∗ : K

F
• (X) → KF

• (Y ) given by
f∗([M]) =

∑
i≥0(−1)i[Rif∗(M)]. Note that this is well-defined: if

0→ (M′, FM′)→ (M, FM)→ (M′′, FM′′)→ 0

is an exact sequence of coherent F -modules, then the long exact sequence in cohomology

. . .→ Rif∗(M′)→ Rif∗(M)→ Rif∗(M′′)→ Ri+1f∗(M′)→ . . .

is compatible with the Frobenius actions, and therefore we get∑
i≥0

(−1)i[Rif∗(M)] =
∑
i≥0

(−1)i[Rif∗(M′)] +
∑
i≥0

(−1)i[Rif∗(M′′)] in KF
• (Y ).

The compatibility with the type (B) relations is straightforward, hence f∗ : K
F
• (X) →

KF
• (Y ) is well-defined.

Exercise 1.6. Use the Leray spectral sequence to show that if g : Y → Z is another proper
morphism, then we have (g ◦ f)∗ = g∗ ◦ f∗ : KF

• (X)→ KF
• (Z).

In fact, we will only use the assertion in the above exercise when f is a closed
immersion, in which case everything is clear since Rig∗ ◦ f∗ = Ri(g ◦ f)∗ for all i ≥ 0, and
Rjf∗ = 0 for all j ≥ 1. The proof of the next lemma is straightforward.

Lemma 1.7. If X is the disjoint union of the subschemes X1, . . . , Xr, then the inclusions
Xi ↪→ X induce an isomorphism

r⊕
i=1

KF
• (Xi) ' KF

• (X).

The following is the main result of this lecture. For a scheme X, we consider X(Fq)
as a closed subscheme of X, with the reduced scheme structure. Note that by Lemmas 1.5
and 1.7, we have an isomorphism KF

• (X(Fq)) ' ⊕x∈X(Fq)Fq(x), and we denote by 〈x〉 ∈
KF
• (X(Fq)) the element corresponding to 1 ∈ Fq(x).

Theorem 1.8. (Localization Theorem) For every projective scheme X over Fq, the inclu-
sion ι : X(Fq) ↪→ X induces an isomorphism KF

• (X(Fq)) ' KF
• (X). Its inverse is given

by t : KF
• (X)→ KF

• (X(Fq)),

t([M, FM]) =
∑

x∈X(Fq)

trace(FM(x))〈x〉.

Let us see that this gives Theorem 1.4.
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Proof of Theorem 1.4. Consider the structure morphism f : X → SpecFq. Let 〈pt〉 denote
the element of KF

• (SpecFq) that corresponds to 1 ∈ Fq via the isomorphism given by
Lemma 1.5. By definition, for every [M, FM] ∈ KF

• (X), we have

f∗([M, FM]) =

dim(X)∑
i=0

(−1)itrace(FM|H i(X,M))

 〈pt〉.

On the other hand, if we apply the isomorphism t in Theorem 1.8, we have

u := t([M, FM]) =
∑

x∈X(Fq)

trace(FM(x))〈x〉.

If ι : X(Fq)→ X is the inclusion, then it is clear that

f∗

ι∗
 ∑
x∈X(Fq)

mx〈x〉

 =

 ∑
x∈X(Fq)

mx

 〈pt〉.

In particular, we have f∗◦ι∗(u) =
(∑

x∈X(Fq)
trace(FM(x))

)
〈pt〉. Since t and ι are inverse

to each other, the assertion in Theorem 1.4 follows. �

Remark 1.9. In fact, Theorem 1.8 is proved in [Ful2] also for arbitrary schemes of finite
type over Fq. In particular, Theorems 1.1 and 1.4 also hold if X is only assumed to be
complete.

2. The proof of the Localization Theorem

We start with a few lemmas.

Lemma 2.1. For every scheme X, and every coherent sheaf on X with Frobenius action
(M, FM) such that FM is nilpotent, we have [M, FM] = 0 in KF

• (X).

Proof. We prove the assertion by induction on m such that ϕm = 0. If m = 1, it is enough
to use relation (B) in the definition of KF

• (X), that gives [M, 0] = [M, 0] + [M, 0]. If
m ≥ 2, and M′ = Ker(FM), then M′ is a coherent OX-submodule of M, and we have
an exact sequence of coherent sheaves with Frobenius action

0→ (M′, FM′)→ (M, FM)→ (M′′, FM′′)→ 0.

This gives [M, FM] = [M′, FM′ ] + [M′′, FM′′ ]. Since FM′ = 0 and Fm−1
M′′ = 0, it follows by

the induction hypothesis that [M′, FM′ ] = 0 = [M′′, FM′′ ]. Therefore [M, FM] = 0. �

Lemma 2.2. If j : X ↪→ Y is a closed embedding, then we have a morphism of Fq-vector
spaces j∗ : KF

• (Y )→ KF
• (X) given by j∗([M, FM]) = [M⊗OY

OX , FM], where FM is the
Frobenius action induced by FM on M⊗OY

OX . In particular, the composition j∗ ◦ j∗ is
the identity on KF

• (X).

Proof. Let I be the ideal defining X in Y . Since FM(IM) ⊆ IqM, it follows that FM
indeed induces a Frobenius action FM on M/IM. We have F1 + F2 = F1 + F2, hence
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in order to show that we have an induced morphism KF
• (Y )→ KF

• (X), we only need to
show that if

0→ (M′, FM′)→ (M, FM)→ (M′′, FM′′)→ 0

is an exact sequence of coherent F -modules on Y , then

[M/IM] = [M′/IM′] + [M′′/IM′′]

in KF
• (X). Note that we have an exact sequence of coherent F -modules on X

0→M′/M′ ∩ IM→M/IM→M′′/IM′′ → 0,

and a surjection M′/IM′ → M′/M′ ∩ IM, with kernel M′ ∩ IM/IM′. In light of
Lemma 2.1, it is enough to show that the Frobenius action onM′∩IM/IM′ is nilpotent.
Since Fm

M(IM) ⊆ Iqm(M), we see thatM′∩Fm
M(IM) ⊆ IM′ for m� 0 by Artin-Rees.

This shows that j∗ is well-defined, and the fact that j∗ ◦ j∗ is the identity follows from
definition. �

Note that if X is any scheme, and we consider j : X(Fq) ↪→ X, then j∗ is the
morphism t in Theorem 1.8. Since j∗ ◦ j∗ is the identity, in order to prove Theorem 1.8
for a projective scheme X, it is enough to show that j∗ ◦ j∗ is the identity on KF

• (X). In
fact, it is enough to show that j∗ is surjective.

Lemma 2.3. If (M, ϕ) is a coherent OX-module with a Frobenius action, andM decom-

poses as M = M1 ⊕ . . . ⊕Mr, and if ϕi,j is the composition Mi → M
ϕ→ M → Mj,

then [M, ϕ] =
∑r

i=1[Mi, ϕi,i] in KF
• (X).

Proof. Let ϕ̃i,j : M→M be the map induced by ϕi,j, so that ϕ =
∑

i,j ϕ̃i,j. By condition

(B) we have [M, ϕ] =
∑

i,j[M, ϕ̃i,j]. For every i 6= j we have ϕ̃2
i,j = 0, hence [M, ϕ̃i,j] = 0

by Lemma 2.1. Therefore

[M, ϕ] =
r∑
i=1

[M, ϕ̃i,i] =
r∑
i=1

[Mi, ϕi,i],

by condition (A). �

The key ingredient in the proof of Theorem 1.8 is provided by the case X = Pn
Fq

. We

now turn to the description of KF
• (Pn

Fq
). We will use the Serre correspondence between

coherent sheaves on Pn
Fq

and finitely generated graded modules over S = Fq[x0, . . . , xn].

Suppose that M is a coherent sheaf on Pn
Fq

with a Frobenius action FM : M →
F∗(M). This induces for every i a morphism

M(i)→ F∗(M)⊗O(i)→ F∗(M(qi)),

where we used the projection formula, and the fact that for every line bundle L we have
F ∗(L) ' Lq. It follows that if M = Γ∗(M) := ⊕i≥0Γ(Pn

Fq
,M(i)), then we get a graded

Frobenius action on M : this is an Fq-linear map FM : M → M such that FM(Mi) ⊆ Mqi

and FM(au) = aqFM(u) for a ∈ S and u ∈M .

Conversely, given a finitely generated graded S-module M with a graded Frobenius

action FM , we get an induced coherent F -module structure on M̃ , as follows. If Ui ⊂ Pn
Fq
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is the open subset defined by xi 6= 0, then Γ(Ui, M̃) = (Mxi)0, and FM̃

(
u
xNi

)
= FM (u)

xqNi
for

every u ∈ MN . It is straightforward to check that this gives a Frobenius action on M̃ .
If (M, FM) is a coherent F -module and M = Γ∗(M), with the graded Frobenius action

described above, then we have an isomorphism of graded F -modules F ' M̃ .

If M = S(−i), then giving a graded Frobenius action FM on M , is equivalent to
giving f = FM(1) ∈ S(q−1)i. In particular, if i < 0, then the only graded Frobenius action
on S(−i) is the zero one. For an arbitrary finitely generated graded S-module M , we
consider a graded free resolution of M

0→ Fn → . . .→ F1 → F0 →M → 0,

where each Fj is a direct sum of of S-modules of the form S(−bi,j), with bi,j ∈ Z. If we
have a graded Frobenius action on M , then we can put graded Frobenius actions on each
Fi, such that the above exact sequence is compatible with the graded Frobenius actions. In

particular, we get [M̃ ] =
∑n

i=0(−1)i[F̃i] in KF
• (Pn

Fq
). It follows from the above discussion

and Lemma 2.3 that KF
• (Pn

Fq
) is generated (as an Fq-vector space) by [O(−i), xa00 · · ·xann ],

where a` ≥ 0 and
∑n

`=0 a` = i(q − 1).

Proposition 2.4. The Fq-vector space KF
• (Pn

Fq
) is generated by [O(−i), xa00 · · ·xann ], with

0 ≤ a` ≤ q − 1 for all `, with some a` < q − 1, and where
∑n

`=0 a` = i(q − 1).

Proof. Let us show first that KF
• (Pn

Fq
) is generated by [O(−i), xa00 · · ·xann ], with 0 ≤ a` ≤

q − 1 for all `, and with
∑n

`=0 a` = i(q − 1). In light of the discussion preceding the
proposition, it is enough to show the following: if u is a monomial such that u = xqiw,
then [O(−i), u] = [O(−i+ 1), xiw] in KF

• (Pn
Fq

). If H is the hyperplane in Pn
Fq

defined by

(xi = 0), we have an exact sequence of coherent sheaves with Frobenius action

0→ O(−i) ·xi→ O(−i+ 1)→ OH(−i+ 1)→ 0,

where the Frobenius actions onO(−i) andO(−i+1) are defined by u and xiw, respectively.
Since xiw restricts to zero on H, it follows that the Frobenius action on OH(−i + 1) is
zero, and we conclude from the above exact sequence that [O(−i), u] = [O(−i+ 1), xiw].

In order to complete the proof of the proposition, it is enough to show that we can
write [O(−(n+ 1)), (x0 · · ·xn)q−1] in terms of the remaining elements of the above system
of generators. In order to do this, let us consider the Koszul complex on Pn

Fq
corresponding

to the global sections x0, . . . , xn of O(1):

0→ En+1 → . . .→ E1 = O(−1)⊕(n+1) h→ E0 = OPn
Fq
→ 0,

where h = (x0, . . . , xn). Using the above decomposition E1 = L0 ⊕ . . .⊕ Ln, then

Er =
⊕

0≤i1<...<ir≤n

(Li1 ⊗ . . .⊗ Lir) ' O(−r)(
n+1
r ).

If on the factor Li1 ⊗ . . . ⊗ Lir of Er we consider the F -module structure given by the
monomial xq−1i1

· · ·xq−1ir
, then the above complex becomes a complex of F -modules. We
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deduce that in KF (Pn
Fq

) we have the following relation:

n+1∑
r=0

(−1)r
∑

0≤i1<...<ir≤n

[O(−r), xq−1i1
· · ·xq−1ir

] = 0,

which completes the proof of the proposition. �

Corollary 2.5. The assertion in Theorem 1.8 holds when X = Pn
Fq

.

Proof. As we have seen, if j : Pn(Fq) ↪→ Pn
Fq

is the inclusion, then j∗ is injective, and it is

enough to show that it is surjective. Proposition 2.4 implies that dimFq K
F
• (Pn

Fq
) ≤ αn−1,

where

αn := |{(a0, . . . , an) | 0 ≤ ai ≤ q − 1, (q − 1) divides
n∑
i=0

ai}|.

Suppose we have (a0, . . . , an−1) with 0 ≤ a` ≤ q−1 for 0 ≤ ` ≤ n−1, and we want to
choose an with 0 ≤ an ≤ q−1 such that

∑n
`=0 a` is divisible by (q−1). If

∑n−1
`=0 a` is divisible

by (q − 1), then we may take an = 0 or an = q − 1; if
∑n−1

`=0 a` is not divisible by (q − 1),
then we have precisely one choice for an. Therefore αn = 2αn−1 +(qn−αn−1) = qn+αn−1.
Since α0 = 2, we conclude that αn = (1 + q + . . .+ qn) + 1.

Therefore dimFq K
F
• (Pn

Fq
) ≤ |Pn(Fq)| = dimFq K

F
• (Pn(Fq)). Since j∗ is injective, it

follows that j∗ is also surjective, completing the proof. �

Proof of Theorem 1.8. Let us fix a closed immersion j : X ↪→ Y = Pn
Fq

. By Corollary 2.5,
it is enough to show that if Theorem 1.8 holds for Y , then it also holds for X.

Consider the following commutative diagram:

(3) X(Fq)
j′ //

ι

��

Y (Fq)

ι′

��
X

j // Y

in which all maps are closed immersions. As we have already mentioned, in order to prove
Theorem 1.8 for X, it is enough to show that ι∗ ◦ ι∗ is the identity on KF

• (X). Since the
theorem holds for Y , we know that ι′∗ ◦ (ι′)∗ is the identity on KF

• (Y ).

Note that j′∗ ◦ ι∗ = (ι′)∗ ◦ j∗: this is an immediate consequence of the definitions.
Therefore

(4) j∗ ◦ ι∗ ◦ ι∗ = (ι′)∗ ◦ j′∗ ◦ ι∗ = ι′∗ ◦ (ι′)∗ ◦ j∗ = j∗.

On the other hand, Lemma 2.2 implies that j∗◦j∗ is the identity on KF
• (X). In particular,

j∗ is injective. We conclude from (4) that ι∗ ◦ ι∗ is the identity on KF
• (X), and this

completes the proof of the theorem. �
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3. Supersingular Calabi-Yau hypersurfaces

As an application of Theorem 1.1, we discuss a characterization of supersingular
Calabi-Yau hypersurfaces. More generally, we prove the following

Proposition 3.1. Let f ∈ Fq[x0, . . . , xn] be a homogeneous polynomial of degree n + 1,
with n ≥ 2, defining the hypersurface Z ⊂ Pn. The following are equivalent:

i) The action induced by the Frobenius morphism on Hn−1(Z,OZ) is bijective (equivalently,
it is nonzero).

ii) |Z(Fq)| 6≡ 1 (mod p).
iii) The coefficient of (x0 · · · xn)q−1 in f q−1 is nonzero.
iv) The coefficient of (x0 · · · xn)p−1 in fp−1 is nonzero.

If Z as above is a smooth hypersurface, then it is ordinary if it satisfies the above
equivalent conditions. Otherwise, it is supersingular.

Proof. Since Z is a hypersurface of degree (n+ 1) in Pn, we have an exact sequence

(5) 0→ OPn(−n− 1)
·f→ OPn → OZ → 0.

This gives H i(Z,OZ) = 0 for 1 ≤ i ≤ n − 2, and H0(Z,OZ) ' Fq ' Hn−1(Z,OZ).
Frobenius acts on H0(Z,OZ) as the identity, and if it acts as multiplication by λ ∈ Fq on
Hn−1(Z,OZ), then Theorem 1.1 gives

|Z(Fq)|mod p = 1 + (−1)n−1λ.

Therefore λ = 0 if and only if |Z(Fq)| ≡ 1 (mod p). This proves i)⇔ii).

In order to prove that iii) and iv) are equivalent, note first that for every r ≥ 1, we
may uniquely write

(6) fp
r−1 = cr(x0 · · ·xn)p

r−1 + ur,

where ur ∈ (xp
r

0 , . . . , x
pr

n ). If we raise to the pth-power in (6), we get

fp
r+1−p = cpr(x0 · · ·xn)p

r+1−p + upr.

Since upr ∈ (xp
r+1

0 , . . . , xp
r+1

n ) and

(x0 · · ·xn)p
r+1−p · (xp0, . . . , xpn) ⊆ (xp

r+1

0 , . . . , xp
r+1

n ),

we deduce that

fp
r+1 − cprc1(x0 · · · xn)p

r+1−1 ∈ (xp
r+1

0 , . . . , xp
r+1

n ).

Therefore cr+1 = cprc1, which immediately gives that cr = c1+p+...p
r−1

1 for every r ≥ 1. In
particular, if q = pe, we see that c1 6= 0 if and only if ce 6= 0, hence iii)⇔iv).

In order to prove the equivalence of i) and iii), we consider the explicit descrip-
tion of the Frobenius action F on Hn−1(Z,OZ) via the isomorphism δ : Hn−1(Z,OZ) →
Hn(Pn,OPn(−n− 1)) induced by (5). We compute the cohomology of OPn(−n− 1) and
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of OZ as Cech cohomology with respect to the affine cover of Pn by the open subsets
(xi 6= 0). Recall that

Hn(Pn,OPn(−n− 1)) ' (Sx0···xn)−n−1/
n∑
i=0

(Sx0···x̂i···xn)−n−1 = Fq ·
1

x0 · · ·xn
.

Suppose that u ∈ Hn−1(Z,OZ) is represented by the Cech cocyle h = (h0, . . . , hn) ∈
⊕ni=0((S/f)x0···x̂i···xn)0. If hi ∈ (Sx0···x̂i···xn)0 is a lift of hi, then δ(u) is represented by the
unique w ∈ (Sx0...xn)−n−1 such that fw =

∑n
i=0(−1)ihi.

On the other hand, F (u) is represented by (h0
q
, . . . , hn

q
). Since we have f(f q−1wq) =∑n

i=0(−1)ihqi , it follows that via the isomorphism δ, we can describe F as the linear map
on (Sx0···xn)−n−1/

∑n
i=0(Sx0···x̂i···xn)−n−1 induced by w → f q−1wq. This map multiplies the

class of 1
x0···xn in this quotient by the coefficient of (x0 · · ·xn)q−1 in f q−1. This completes

the proof of ii)⇔iii), hence the proof of the proposition. �

Remark 3.2. In the context of Proposition 3.1, note that if trace(F | Hn−1(Z,OZ)) =
1 + (−1)n−1a, then for every r ≥ 1 we have 1 + (−1)n−1ar = |Z(Fqr)|mod p. This is a
consequence of Theorem 1.1 (see also Remark 1.3).

Exercise 3.3. Give a direct proof for the implication ii) ⇔ iii) in Proposition 3.1 by
computing

∑
a∈Fn+1

q
f(a)q−1 (see [Knu]).

Exercise 3.4. Show that if X is an elliptic curve (that is, X is a smooth, geometrically
connected, projective curve of genus 1) over Fp, with p 6= 2, 3, then X is supersingular if
and only if |X(Fp)| = p+ 1.

Exercise 3.5. Let Z ⊂ Pn
Fq

be a complete intersection subscheme of codimension r,

defined by (F1, . . . , Fr). Let di = deg(Fi), and assume that
∑

i di = n + 1. Show that the
following are equivalent:

i) The action induced by the Frobenius morphism on the cohomology group Hn−r(Z,OZ)
is bijective (equivalently, it is nonzero).

ii) |Z(Fq)| 6≡ 1 (mod p).
iii) The polynomial F1 · · ·Fr satisfies the equivalent conditions in Proposition 3.1.
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