
LECTURE 7. THE LANG-WEIL ESTIMATE AND THE ZETA
FUNCTION OF AN ARITHMETIC SCHEME

Our main goal in this lecture is to introduce the zeta function of an arithmetic
scheme. In order to compute the abscissa of convergence of this function, we will use the
Lang-Weil estimate. The proof of this estimate will make use of the Chow variety, which
we review in the first section.

1. The Chow variety

We review in this section some basic facts concerning the Chow variety. For proofs
and further properties, see [Kol, Chapter I].

Suppose first that K is an algebraically closed field, and V ⊆ P = Pn
K is a closed

subvariety of dimension r and degree d. Let P∗ ' Pn
K denote the dual projective space

parametrizing the hyperplanes in P. Consider the following incidence variety:

Λ := {x,H1, . . . , Hr+1) ∈ V × (P∗)r+1 | x ∈ Hi for all i}.

Let f : Λ → V and g : Λ → (P∗)r+1 denote the morphisms induced by projections. It is
clear that every f−1(x) is isomorphic to (Pn−1

K )r+1. Therefore Λ is irreducible, of dimension
r + (n − 1)(r + 1). On the other hand, since we can find (H1, . . . , Hr+1) ∈ (P∗)r+1 such
that V ∩H1 . . . ∩Hr+1 is a nonempty finite set, it follows that g is generically finite onto
its image W . Therefore W is an irreducible subvariety of (P∗)r+1 of codimension equal to
(r+1)n−(r+(r+1)(n−1)) = 1, hence a divisor. One can show thatO(W ) = O(d, d, . . . , d).
The Caylay form of V is an equation defining W . This is given by a polynomial RV in
(r+1) sets of (n+1) variables (unique up to a nonzero scalar), homogeneous of degree d in
each set of variables. Note that W determines V : x ∈ P lies in V if and only if W contains
all (H1, . . . , Hr+1) ∈ (P∗)r+1 such that x ∈ Hi for all i. We thus have an injective map
from the set of irreducible subvarieties of P of dimension r and degree d to |O(1, . . . , 1)|.
The image Chow◦K(n, d, r) is a quasiprojective variety, whose closure is the Chow variety
ChowK(n, d, r). In particular, the complement ChowK(n, d, r)rChow◦K(n, d, r) is a closed
subset of |O(1, . . . , 1)|.

In fact, ChowK(n, d, r) parametrizes effective r-cycles of degree d in Pn, as follows.
Consider an effective r-cycle Z =

∑
imiVi of degree d (that is,

∑
imideg(Vi) = d). Note

that RZ :=
∏

iR
mi
Vi

defines a divisor in |O(d, . . . , d)|. One can show that this gives a
bijection between the set of cycles as above and ChowK(n, d, r).

If k is an arbitrary field, let K be an algebraic closure of k. Every subscheme Y ↪→ Pn
k

of pure dimension r and degree d determines an r-cycle [Y ×kK] of degree d, hence a point
Φ(Y ) ∈ ChowK(n, d, r). Note that Φ(Y ) ∈ Chow◦K(n, d, r) if and only if Y is generically
reduced and geometrically irreducible (recall that Y is geometrically irreducible if Y ×kK
is irreducible).
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We will need two facts about Chow varieties. The first is that if X ⊆ Pn
K is

an irreducible variety and H ⊂ Pn
K is a hyperplane that does not contain X, then

R[X∩H](u1, . . . , ur) = RX(u1, . . . , ur, h), where h is an equation of H (in the special case
when X ∩H is integral, this is an immediate consequence of the above definitions).

The second fact that we need is that one can do the above construction over
SpecZ. More precisely, we have schemes Chow◦Z(n, d, r) ⊂ ChowZ(n, d, r) such that
for every algebraically closed field K, after taking the product with SpecK we obtain
Chow◦K(n, d, r) ⊂ ChowK(n, d, r). The upshot is that we can find e such that the subva-
riety

ChowK(n, d, r) r Chow◦K(n, d, r) ⊂ P(Γ((Pn
K)∗ × . . .× (Pn

K)∗,O(d, . . . , d))∗)

is defined (set-theoretically) by finitely many equations of degree e with coefficients in the
prime field of K (the key point is that e is independent of the field K).

2. The Lang-Weil estimate

In this section we work with a geometrically irreducible variety X defined over a
finite field k. We show that if we assume that X is embedded in a projective space of fixed
dimension, then we have universal estimates for |X(k′)|, where k′/k is finite, in terms of
dim(X), deg(X), and |k′|. More precisely, we show the following

Theorem 2.1. ([LaWe]) Given nonnegative integers n, d, and r, with d > 0, there is a
positive constant A(n, d, r) such that for every finite field k = Fq, and every geometrically
irreducible subvariety X ⊆ Pn

k of dimension r and degree d, we have

(1) |#X(k)− qr| ≤ (d− 1)(d− 2)qr−
1
2 + A(n, d, r)qr−1.

The proof we give follows [LaWe], arguing by induction on r. The case of curves is a
consequence of the Riemann hypothesis part of the Weil conjectures, that we have proved
in Lecture 4. For the induction argument, we will need two lemmas. The first one gives a
weaker bound than the assertion in the theorem.

Lemma 2.2. Given n, d, and r as in Theorem 2.1, there is a positive constant A1(n, d, r)
such that for every finite field k = Fq, and every irreducible subvariety X ⊆ Pn

k of
dimension r and degree ≤ d, we have

(2) #X(k) ≤ A1(n, d, r)q
r.

Proof. We argue by induction on n. If n = 0, then X = Spec k, hence r = 0 and d = 1,
and we may take A1(0, 1, 0) = 1.

Suppose now that we have A1(n
′, d, r) for n′ ≤ n that satisfy the condition in the

lemma. Let X ⊆ Pn+1
k be an irreducible subvariety of dimension r and degree d. For

every λ ∈ k, let Hλ ⊂ Pn+1
k be the hyperplane defined by (x1 − λx0 = 0), and let H∞

be the hyerplane (x0 = 0). If X is degenerate, then it lies in some Pn
k , and we get (2)

if A1(n + 1, d, r) ≥ A1(n, d, r). On the other hand, if X is nondegenerate, then each
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Xλ := (X ∩Hλ)red is a subvariety of Pn
k of degree ≤ d, and of pure dimension (r − 1). In

particular, if its irreducible components are X1
λ, . . . , X

mλ
λ , then mλ ≤ d. Therefore

|X(k)| ≤
∑

λ∈k∪{∞}

|Xλ(k)| ≤ dA1(n, d, r)(q + 1)qr ≤ 2dA1(n, d, r)q
r+1.

Therefore it is enough to take A1(n+ 1, d, r) = 2dA1(n, d, r). �

Remark 2.3. Suppose that X is as in Lemma 2.2, but instead of being irreducible,
we only assume that it has pure dimension r. In this case the number of irreducible
components of X is bounded above by d. Therefore we deduce from the lemma that
#X(k) ≤ dA1(n, d, r)q

r.

If X is allowed to have components of smaller dimension, then the number of such
components is not controlled by the degree. However, we still get

Corollary 2.4. If X is an r-dimensional variety over Fq, then there is cX > 0 such that
#X(Fqe) ≤ cXq

re for every e ≥ 1.

Proof. Arguing by induction on r, we see that it is enough to show that if U ⊆ X is a
dense affine open subset, then we have a similar bound for #U(Fqe) (this follows since
dim(X r U) < r). It is of course enough to give such a bound for the closure U of U in
some projective space. This in turn follows by applying Lemma 2.2 to each irreducible
component of U . �

Recall that we denote by (Pn
k)∗ the dual projective space of Pn

k . Note that a k-
rational point of (Pn

k)∗ corresponds to a k-hyperplane in Pn
k , that is, to a hyperplane

given by an equation
∑n

i=0 aixi = 0, with all ai ∈ k.

Lemma 2.5. Given n, d, and r as in Theorem 2.1, with r ≥ 2, there is a positive constant
A2(n, d, r) such that for every nondegenerate geometrically irreducible subvariety X ⊆ Pn

k

of dimension r and degree d, the number of k-hyperplanes H in Pn
k such that H ∩ X is

either not geometrically irreducible, or not generically reduced, is ≤ A2(n, d, r)q
n−1.

Proof. We make use of the definitions and notation introduced in §1. Let K = k, and
consider V = ChowK(n − 1, d, r − 1) r Chow◦K(n − 1, d, r − 1). As we have mentioned,
V = W ×k K for a closed subvariety W ↪→ PN

k that is the set-theoretic intersection of
finitely many hypersurfaces Zj of degree e (where N and e only depend on n, d, and r).

By construction, if X∩H is not geometrically irreducible or not generically reduced,
then Φ(X ∩H) ∈ V . Consider the morphism (Pn

K)∗ → PN
K defined over k that takes H to

RX(·, . . . , ·, h), where h is an equation of H. Note that there is j such that Zj ×k K does
not contain the image of (Pn

K)∗: indeed, since X is geometrically irreducible and r ≥ 2,
we know by Bertini’s theorem that there is a hyperplane in Pn

K whose intersection with
X×kK is integral. The pull-back of this hypersurface Zj×kK to (Pn

K)∗ is a hypersurface of
degree e′ defined over k, where e′ only depends on n, d, and r. It follows from Lemma 2.2
(see also Remark 2.3) that if we take A2(n, d, r) = e′A1(n, e

′, n − 1), this satisfies the
requirement in the lemma. �
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We can now give the proof of the main result of this section.

Proof of Theorem 2.1. For every variety X, we denote by XK the variety X×Spec kSpecK,
where K is a fixed algebraic closure of k, and for a morphism π : Y → X, we denote by
πK the corresponding morphism YK → XK . It will be convenient to think of X(k) as
the points of XK fixed under the suitable Frobenius morphism. We will use the fact that

γn := |Pn(Fq)| = qn+1−1
q−1 (see Lecture 2).

The proof is by induction on r. The case r = 0 is trivial, since in this case |X(k)| =
1 = qr. Suppose that r = 1, and let π : Y → X be the normalization of X. The curve Y is
nonsingular, projective, and geometrically connected (for the last assertion, note that we
have a dense open subset U of Y such that UK is irreducible). Therefore we may apply to
Y the results in Lecture 4, and in particular the estimate for the number of rational points
on Y given by the analogue of the Riemann hypothesis (see Lemma 3.3 and Theorem 3.1
in Lecture 4). We deduce that if g is the genus of Y , then

(3) |#Y (Fq)− (q + 1)| ≤ 2gq1/2.

Note that

(4) |#X(Fq)− q| ≤ |#Y (Fq)− (q + 1)|+ 1 +
∑

x∈(XK)sing

deg(π−1K (x)).

In order to estimate the sum in (4), as well as the genus of Y , let us consider a general
projection of XK to P2

K , which gives a birational morphism ϕ : XK → C, where C is an
ireducible plane curve of degree d. Let ψ = ϕ ◦ πK . Note that if x ∈ C is a smooth point,
then ψ is an isomorphism around x, hence ϕ−1(x) is contained in the smooth locus of XK .
Therefore

(5)
∑

x∈(XK)sing

deg(π−1K (x)) ≤
∑

x∈Csing

deg(ψ−1(x)).

For every x ∈ Csing we have deg(ψ−1(x)) ≤ d: if L is a hyperplane in P2
K passing

through x and not containing C, then deg(ψ−1(x)) ≤ deg(ψ−1(C ∩H)) = d.

The arithmetic genus of C is h1(C,OC) = (d−1)(d−2)
2

. We have a short exact sequence
of sheaves

0→ OC → ψ∗(OYK )→ ⊕x∈Csing
ÕC,x/OC,x → 0,

where ÕC,x is the integral closure of OC,x. If δx = length(ÕC,x/OC,x), then we get from the
long exact sequence in cohomology that g = pa(C)−

∑
x∈Csing

δx. This gives g ≤ pa(C) =
(d−1)(d−2)

2
. We also obtain

∑
x∈Csing

δx ≤ (d−1)(d−2)
2

. Since δx ≥ 1 for every singular point

x ∈ C, we deduce that #Csing ≤ (d−1)(d−2)
2

. We deduce using (3), (4) and (5) that

|#X(Fq)− q| ≤ (d− 1)(d− 2)q1/2 +
d(d− 1)(d− 2)

2
+ 1,

hence we are done in the case r = 1 by taking A(n, d, 1) = d(d−1)(d−2)
2

+ 1.

Suppose now that we can find A(n, d, r) as in the theorem for r ≥ 1, and let us
find A(n, d, r + 1). Arguing also by induction on n, we may assume that we can find
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A(n − 1, d, r + 1) as required (note that the cases n = 0 and n = 1 are clear). Let X be
a geometrically irreducible subvariety of Pn

k , of degree d and dimension (r + 1). If X is
degenerate, then X lies in some Pn−1

k , in which case we get the bound in the theorem if
we take A(n, d, r + 1) ≥ A(n− 1, d, r + 1). Assume henceforth that X is nondegenerate.

In order to avoid messy computations, we introduce the following notation: given
two real numbers a and b, we write a ≤ b + o(qr) if there is an inequality a ≤ b + C · qr,
where C is a positive constant that is only allowed to depend on n, d, and r. Note that
we have a ≤ b+ o(qr) if and only if γn−1a ≤ γn−1b+ o(qr+n−1).

Let W ⊆ X×(Pn
k)∗ be the subvariety consisting of the pairs (x,H) such that x ∈ H.

The projections onto the two components give the maps W → X and W → (Pn
k)∗. The

key idea is to compute in two ways #W (Fq), using these two morphisms. Note that for
every x ∈ X(Fq), the number of Fq-hyperplanes containing x is #Pn−1(Fq) = γn−1.
Therefore

(6) |W (Fq)| = γn−1 · |X(Fq)|.

On the other hand, using the morphism W → (Pn
k)∗, we see that

(7) |W (Fq)| =
∑

H∈(Pn)∗(k)

|(X ∩H)(Fq)|.

We break the sum in (7) into two sums, in the first one S1 collecting all H such that
H ∩ X is either not geometrically irreducible, or not generically reduced, and in the
second one S2, collecting the remaining terms. Note that for every H that contributes
to S1, the subvariety (H ∩ X)red ⊆ H ' Pn−1

k has degree ≤ d, and pure dimension r.
In particular, the number of irreducible components of (H ∩ X)red is ≤ d, and each has
degree ≤ d. It follows from Lemma 2.2 that |(X ∩ H)(Fq)| ≤ o(qr). On the other hand,
we can use Lemma 2.5 to bound the number of such hyperplanes by A2(n, d, r + 1)qn−1,
hence S1 ≤ o(qr+n−1), and therefore

(8)
1

γn−1
S1 ≤ o(qr).

Note, in particular, that this sum can be absorbed in the error term.

On the other hand, if H ∩ X is geometrically irreducible and generically reduced,
then (H ∩X)red is a variety of dimension r and degree d, and we can estimate the number
of points in (X ∩H)(Fq) by induction: we have

(9) |#(X ∩H)(Fq)− qr| ≤ (d− 1)(d− 2)qr−
1
2 + o(qr−1).

Let δ be the number of hyperplanes that contribute to S2. Note that

(10)

∣∣∣∣ 1

γn−1
S2 − qr+1

∣∣∣∣ ≤ ∣∣∣∣ 1

γn−1
(S2 − δqr)

∣∣∣∣+

∣∣∣∣ δqrγn−1
− qr+1

∣∣∣∣.
By Lemma 2.5 we have |δ − γn| ≤ o(qn−1). This implies δ

γn−1
≤ o(q) and∣∣∣∣ δqrγn−1

− qr+1

∣∣∣∣ ≤ |δ − γn| · qrγn−1
+

∣∣∣∣γnqrγn−1
− qr+1

∣∣∣∣ ≤ o(qr).
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On the other hand, it follows from (9) that

(11)

∣∣∣∣ 1

γn−1
(S2 − δqr)|

∣∣∣∣ ≤ (d− 1)(d− 2)qr+
1
2 + o(qr),

hence ∣∣∣∣ 1

γn−1
S2 − qr+1

∣∣∣∣ ≤ (d− 1)(d− 2)qr+
1
2 + o(qr).

By combining this with (8), we get the existence of A(n, d, r + 1), which completes the
proof of the theorem. �

3. Estimating the number of points on arbitrary varieties

We explain in this section how to estimate the number of k-rational points on X
when X is not assumed to be geometrically irreducible. In this section, however, the
constant in the estimate will be allowed to depend on X.

Let us first introduce some notation. Suppose that k = Fq is a finite field, and
X ↪→ Pn

k is an irreducible closed subvariety of degree d and dimension r. We denote by
Γ = {W1, . . . ,Wm} the set of irreducible components of Xk = X ×k k. It follows from
Proposition 2.4 in the Appendix thatG = G(k/k) acts transitively on Γ. LetG′ ⊆ G be the
stabilizer of any of the elements of Γ with respect to this action. Note that G′ = G(k/Fq`),
where Fq` is the smallest extension of Fq over which one (hence all) of the Wi is defined
(see Proposition 2.6 in the Appendix, and its proof). Since G/G′ has ` elements, it follows
that ` = m.

Proposition 3.1. Let n, d, r be nonnegative integers, with d > 0. Given any k = Fq and
X as above, there are positive constants cX and c′X such that if m is as above, then for
every e ≥ 1 we have

|#X(Fqe)−mqer| ≤
(d−m)(d− 2m)

m
qe(r−

1
2
) + cXq

e(r−1) if m|e, and

#X(Fqe) ≤ c′Xq
e(r−1), if m 6 |e.

Furthermore, if X is smooth over Fq, then we may take c′X = 0 and cX only to depend on
n, d, and r (but not on X or on k).

Proof. For every e ≥ 1, let Xe := X×FqFqe . If m|e, then Xe has m irreducible components
V1, . . . , Vm, and each of them is geometrically irreducible. Furthermore, we have dim(Vi) =
r and deg(Vi) = d

m
for every i. Note that each Vi ∩ Vj is the extension to Fqe of the

corresponding intersection of irreducible components defined over Fqm , and has dimension
< r when i 6= j. Moreover, if X is smooth, then Vi ∩ Vj = ∅ for i 6= j. Since

|#X(Fqe)−mqer| ≤
m∑
i=1

|#Vi(Fqe)− qer|+
∑
i<j

#(Vi ∩ Vj)(Fqe),

we deduce the first estimate in the proposition from Theorem 2.1 and Corollary 2.4.
Moreover, when X is smooth, it is enough to take cX = d ·max1≤d′≤dA(n, d′, r), where we
use the notation in Theorem 2.1.



7

Suppose now that m does not divide e. Recall that if F = FrobX,q× Id, then X(Fqe)
can be identified with the fixed points of F e on Xk. By assumption, none of W1, . . . ,Wm is
fixed by G(k/Fqe) ⊆ G. Note also that an irreducible subset Z ⊂ Xk is fixed by G(k/Fqe)
if and only if F e(Z) ⊆ Z (see the proof of Proposition 2.6 in the Appendix). It follows that
if u ∈ Wi is fixed by F e, then u ∈

⋂
j F

ej(Wi), which is a proper closed subvariety of Wi,

defined over Fqe (empty when X is smooth). Since its dimension is ≤ r − 1, we conclude
by Remark 2.3 that we can find c′X as required (note that the varieties

⋂
j F

ej(Wi) only

depend on the congruence class of e mod `, hence we only get finitely many such varieties).
This completes the proof of the proposition. �

It is now straightforward to estimate the number of Fqe-rational points on an arbi-
trary variety X over Fq. Let X1, . . . , X` be the irreducible components of X of maximal

dimension r, and let mi be the number of irreducible components of Xi ×k k.

Proposition 3.2. For every X as above, there are positive constants αX , α′X such that
for every e ≥ 1, if we put ae =

∑
mi|emi, then

|#X(Fqe)− aeqer| ≤ αXq
e(r− 1

2
) if ae > 0, and

#X(Fqe) ≤ α′Xq
e(r−1), otherwise.

Proof. Let Ui ⊆ Xi be affine open subsets that do not intersect the other irreducible
components of X, and let U =

⋃`
i=1 Ui. Since dim(XrU) < r, it follows from Corollary 2.4

that it is enough to prove the assertion in the proposition for U . If Ui is the closure of Ui
in some projective space, and U =

⊔`
i=1 Ui, it follows as before that it is enough to prove

the estimate for U . This follows by applying Proposition 3.1 to each of the Ui. �

4. Review of Dirichlet series

In this section we collect some basic facts about Dirichlet series. In the first part we
follow [Se, Chapter VI, §2]. A Dirichlet series is a series of functions of the form

(12)
∑
n≥1

an
ns
,

where an ∈ C, and s varies over C. The following proposition is the basic result that
controls the convergence of Dirichlet series.

Proposition 4.1. If the series
∑

n≥1
an
ns

converges for s = s0, then it converges uniformly
in every domain of the form: Re(s− s0) ≥ 0, Arg(s− s0) ≤ α, where 0 < α < π/2.

Proof. Let us write s − s0 = z = x + yi, with x, y ∈ R. It is enough to show that the
sequence of functions

(∑m
n=1

an
ns

)
m

is uniformly Cauchy in any domain with x ≥ 0, and
|z| ≤ Mx. Suppose that ε > 0 is given. By hypothesis, we can find m such that |Ap| ≤ ε

for every p, where Ap =
∑m+p

n=m+1
an
ns0

.
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We may of course assume that x > 0, and we write

(13)

m+p∑
n=m+1

an
ns

=

m+p∑
n=m+1

an
ns0
· 1

nz
=

Ap
(m+ p)z

+

p−1∑
`=1

A`

(
1

(m+ `)z
− 1

(m+ `+ 1)z

)
We now bound∣∣∣∣ 1

(m+ `)z
− 1

(m+ `+ 1)z

∣∣∣∣ =

∣∣∣∣z · ∫ log(m+`+1)

log(m+`)

e−tzdt

∣∣∣∣ ≤ |z| · ∫ log(m+`+1)

log(m+`)

e−txdt

=
|z|
x

(
1

(m+ `)x
− 1

(m+ `+ 1)x

)
.

Using this bound and the condition on |A`|, we conclude that that∣∣∣∣ m+p∑
n=m+1

an
ns

∣∣∣∣ ≤ ε

(m+ p)x
+ ε
|z|
x
·
p−1∑
`=1

(
1

(m+ `)x
− 1

(m+ `+ 1)x

)
≤ ε(1 +M).

This completes the proof of the proposition. �

The abscissa of convergence of the series
∑

n≥1
an
ns

is

ρ = inf{Re(s) |
∑
n≥1

an
ns

is convergent at s}.

It follows from Proposition 4.1 that
∑

n≥1
an
ns

converges uniformly on every compact subset
contained in {s | Re(s) > ρ} (this is called the half-plane of convergence of the series). In
particular, it defines a holomorphic function on this half-plane. It follows from definition
that the series is divergent at every s with Re(s) < ρ. Note that ρ =∞ if and only if the
series diverges everywhere, and ρ = −∞ if and only if the series is everywhere convergent.

Example 4.2. Suppose that α ∈ R is such that the sequence |an|/nα is bounded above.
In this case the abscissa of convergence ρ of

∑
n≥1

an
ns

satisfies ρ ≤ 1 + α. Furthermore,
suppose that an ∈ R≥0 and lim infn→∞

an
nα

> 0; in this case ρ = α + 1. Both assertions

follow from the fact that for p ∈ R, the series
∑

n≥1
1
np

is convergent if and only if p > 1.

Example 4.3. If we consider the Dirichlet series
∑

n≥1
1
ns

defining the Riemann zeta
function ζ(s), then the abscissa of convergence is ρ = 1.

Proposition 4.4. Suppose that f(s) =
∑

n≥1
an
ns

and g(s) =
∑

n≥1
bn
ns

are both convergent
for every s with Re(s) > α. If f(s) = g(s) for every such s, then an = bn for every n ≥ 1.

Proof. By considering h =
∑

n≥1
an−bn
ns

, we see that it is enough to prove the assertion
when all bn are zero. In this case, we prove by induction on n that an = 0. Suppose
that a1 = . . . = an−1 = 0, and that f(s) = 0 for all s with Re(s) > α. It follows from
Proposition 4.1 that the series of functions

∑
m≥n

amns

ms
is uniformly convergent (to 0, by

our assumption) for s ∈ R, with s > ρ. For every m > n we have lims→∞
amns

ms
= 0, hence

an = lims→∞
∑

m≥n
amns

ms
= 0. This completes the induction step.

�
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As we have seen in Example 4.2, if |am| ≤ Cmα for all m, then the abscissa of
convergence of the Dirichlet series

∑
n≥1

an
ns

is ≤ 1+α. The following proposition improves
this upper bound when α ≥ 0 and when we have the similar bound for all sums a1+. . .+am.

Proposition 4.5. If α ∈ R≥0 is such that |
∑m

n=1 an| ≤ Cmα for all m, then the Dirichlet
series

∑
n≥1

an
ns

is convergent in the half-plane {s | Re(s) > α}.

Proof. We follow a similar argument to that used in the proof of Proposition 4.1. Note that
we have |

∑m+`
n=m+1 an| ≤ C((m+ `)α +mα) ≤ 2C(m+ `)α for all m and `. Consider s ∈ C

with Re(s) > α, and let us write s = x + yi, with x, y ∈ R. If we put Ap =
∑m+p

n=m+1 an
for all p, then we have∣∣∣∣ m+p∑

n=m+1

an
ns

∣∣∣∣ =

∣∣∣∣ Ap
(m+ p)s

+

p−1∑
`=1

A`

(
1

(m+ `)s
− 1

(m+ `+ 1)s

) ∣∣∣∣
≤ |Ap|

(m+ p)x
+

p−1∑
`=1

|A`s|·
∣∣∣∣ ∫ log(m+`+1)

log(m+`)

e−tsdt

∣∣∣∣ ≤ 2C

(m+ p)x−α
+

p−1∑
`=1

|s|
∫ log(m+`+1)

log(m+`)

|A`|e−txdt.

Since |A`| ≤ 2C(m+ `)α, it follows that |A`| ≤ 2Ceαt for t ≥ log(m+ `). Therefore

p−1∑
`=1

∫ log(m+`+1)

log(m+`)

|A`|e−txdt ≤ 2C ·
p−1∑
`=1

∫ log(m+`+1)

log(m+`)

et(α−x)dt = 2C ·
∫ log(m+p)

log(m+1)

et(α−x)dt

=
2C

x− α

(
1

(m+ 1)x−α
− 1

(m+ p)x−α

)
.

We thus conclude that∣∣∣∣ m+p∑
n=m+1

an
ns

∣∣∣∣ ≤ 2C

(m+ p)x−α
+

2C|s|
x− α

(
1

(m+ 1)x−α
− 1

(m+ p)x−α

)
,

and for fixed s this can be made arbitrarily small by taking m large enough. This shows
that

∑
n≥1

an
ns

is convergent. �

Proposition 4.6. The Riemann zeta function has a meromorphic continuation to the
half-space {s | Re(s) > 0}, with a unique pole at s = 1, which is simple, and with residue
1.

Proof. The trick is to consider the following auxiliary Dirichlet series

ζr(s) =
∑
n≥1

an,r
ns

=
∑
r 6 |m

1

ms
−
∑
r|m

r − 1

ms
,

for every r ≥ 2. It is clear that
∑m

n=1 an,r ∈ {0, 1, . . . , r − 1}, hence Proposition 4.5
applies to give that ζr(s) is a holomorphic function on {s | Re(s) > 0}. It is clear that for
Re(s) > 1 we have ζr(s) + r1−sζ(s) = ζ(s), hence

ζ(s) =
ζr(s)

1− r1−s
.
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This shows that ζ has a meromorphic continuation to the half-plane {s | Re(s) > 0}.
Furthermore, every pole in this region is simple, and it is of the form 1 + 2mπi

log(r)
, for some

m ∈ Z. By considering r = 2 and r = 3, we see that in fact, the only possible pole of ζ in
this region is at s = 1.

Note that the residue at 1 is ζ2(1)
log(2)

. Recall that we have log(1+x) =
∑

n≥1(−1)n−1 x
n

n

for |x| < 1. The series is convergent at x = 1, hence by Abel’s theorem the sum for x = 1

is equal to limx∈R,x→1 log(x) = log(2). Therefore log(2) =
∑

n≥1
(−1)n−1

n
= ζ2(1), and we

see that the residue of ζ at s = 1 is 1. �

In fact, ζ can be meromorphically extended to C, and the only pole is s = 1.
Furthermore, after multiplication by a suitable factor involving the Γ-function, ζ satisfies
a functional equation. We refer to [Lang, Chapter XIII] for the statement of the functional
equation, for proofs and generalizations.

In the case of Dirichlet series with nonnegative coefficients, the sum has a singularity
at the real point on the boundary of the half-plane of convergence. More precisely, we have
the following.

Proposition 4.7. Consider a Dirichlet series
∑

n≥1
an
ns

, with an ∈ R≥0 for all n. If the
abscissa of convergence ρ is finite, then the sum f(s) of this series can not be analytically
extended to a holomorphic function in the neighborhood of s = ρ.

Proof. Let us denote f(s) =
∑

n≥1
an
ns

for Re(s) > ρ, and suppose that f has an analytic
continuation to a neighborhood of ρ. In this case there is ε > 0 such that f is holomorphic
inside the disc {s | |s − (ρ + 1)| < 1 + 2ε}. Therefore in the interior of this disc we have
the Taylor expansion

(14) f(s) =
∑
i≥0

f (i)(ρ+ 1)

i!
(s− ρ− 1)i.

On the other hand, since the series converges uniformly in the half-space {s | Re(s) > ρ},
we can differentiate term-by-term in this region to get

(15) f (i)(s) =
∑
n≥1

an
ns

(−log n)i.

By taking s = ρ+ 1, we get

(16) f (i)(ρ+ 1) =
∑
n≥1

an
nρ+1

(−log n)i.

Computing f(ρ− ε) via (14), and using also (16), we deduce that

f(ρ− ε) =
∑
i≥0

f (i)(ρ+ 1)

i!
(−1− ε)i =

∑
i≥0

∑
n≥1

an
nρ+1

((1 + ε) log n)i

i!
.
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Since this is a convergent double series with nonnegative terms, we may change the order
of summation, and deduce that∑

n≥1

an
nρ+1

∑
i≥0

((1 + ε)log n)i

i!
=
∑
n≥1

an
nρ−ε

is convergent. Hence our Dirichlet series is convergent for s = ρ− ε, a contradiction. �

Suppose now that
∑

n≥1
an
ns

is an arbitrary Dirichlet series. The abscissa of absolute

convergence ρ+ of this series is the abscissa of convergence of
∑

n≥1
|an|
ns

. It is clear that if

ρ is the abscissa of convergence of the given Dirichlet series, then ρ ≤ ρ+. One can show
that ρ+ ≤ ρ + 1, hence in particular ρ < ∞ if and only if ρ+ < ∞. We will not use this
result, so we simply refer to [MoVa, Theorem 1.4] for a proof.

We now want to show that in the half-plane of absolute convergence, under suitable
multiplicative properties, we can decompose the sum of the Dirichlet series as an Euler
product. Before doing this, let us recall a basic lemma concerning infinite products. Recall
that if (an)n≥1 is a sequence of complex numbers, then the product

∏
n≥1(1 + an) is

absolutely convergent if the series
∑

n≥1 an is absolutely convergent.

Lemma 4.8. If the product
∏

n≥1(1 + an) is absolutely convergent, then it is convergent.
Furthermore, the product is independent of the order of the factors, and it is zero if and
only if one of the factors is zero.

It is clear that if (ai)i∈I is any set of complex numbers indexed by a countable set,
then it makes sense to say that the product

∏
i∈I(1 + ai) is absolutely convergent. The

lemma implies that in this case the product
∏

i∈I(1 + ai) is well-defined.

Proof. The hypothesis implies in particular that limn→∞ an = 0. Therefore there is n0

such that |an| < 1 for all n ≥ n0. For all statements in the lemma we may ignore finitely
many of the factors, hence we may assume that n0 = 1. Since

log

(
n∏
i=1

(1 + ai)

)
=

n∑
i=1

log(1 + ai),

the first two assertions in the lemma follow if we show that the series
∑

i≥1 |log(1 + ai)|
is convergent. For every u with |u| < 1, we have

|log(1 + u)| =
∣∣∣∣∑
n≥1

(−1)n−1
un

n

∣∣∣∣ ≤∑
n≥1

|u|n

n
= −log(1− |u|) = log(1 + w) ≤ w,

where 1 +w = (1− |u|)−1. Note that w = |u|
1−|u| ≤

1
2
|u| if |u| ≤ 1

2
, hence |log(1 +u)| ≤ 1

2
|u|

when |u| ≤ 1
2
. Since |ai| ≤ 1

2
for i� 0, the hypothesis that

∑
i≥1 |ai| is convergent implies

that
∑

i≥1 |log(1 + ai)| is convergent.

For the last assertion in the lemma, note that if
∑

n≥1 log(1 + an) = u, then the
product

∏
n≥1(1 + an) is equal to exp(u), hence it is nonzero. �
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Remark 4.9. Note that the infinite product
∏

n≥1(1 + |an|) is convergent if and only if
it is absolutely convergent. Indeed, the “if” part follows from the above lemma, while the
“only if” part is a consequence of the fact that for every n

n∑
i=1

|ai| ≤
n∏
i=1

(1 + |ai|) ≤
∞∏
i=1

(1 + |ai|).

This implies that the infinite product
∏

n≥1(1 + an) is absolutely convergent if and only if
the product

∏
n≥1(1 + |an|) is convergent, which is the case if and only if the series with

nonnegative terms
∑

n≥0 log(1 + |an|) is convergent.

Exercise 4.10. Consider (am,n)m,n≥1, with am,n ∈ C. Show that if each infinite product∏
n≥1 am,n is absolutely convergent and bm =

∏
n≥1 am,n, then the following are equivalent

i) The product
∏

m≥1 bm is absolutely convergent.
ii) The product

∏
m,n≥1 am,n is absolutely convergent.

Furthermore, show that in this case
∏

m,n≥1 am,n =
∏

m≥1 bm.

We say that a sequence (an)n≥1 is multiplicative if amn = aman whenever m and n
are relatively prime. In this case we have a1 ·am = am for every m. In particular, we either
have am = 0 for all m, or a1 = 1. In order to avoid trivial cases, we always assume that
a1 = 1.

Proposition 4.11. Let (an)n≥1 be a multiplicative sequence, and consider the Dirichlet
series f =

∑
n≥1

an
ns

. If the abscissa of absolute convergence ρ+ is not +∞, then for every

s with Re(s) > ρ+ the following product over all positive prime integers

(17)
∏
p

(∑
m≥0

apm

pms

)
is absolutely convergent, and it is equal to f(s). Furthermore, if we assume that all an ≥ 0
and we know that the product (17) is convergent for every s0 ∈ R with s0 > α, then
ρ = ρ+ ≤ α.

Proof. Let s ∈ C be such that Re(s) > ρ+. By assumption, the series
∑

n≥1
an
ns

is absolutely

convergent. In particular, we see that
∑

p

∑
m≥1

|apm |
pms

is absolutely convergent, hence the

product (17) is absolutely convergent.

Let fp(s) be the factor in (17) corresponding to the prime p. If p1, . . . , pr are the
first r prime integers, then the series

Sr :=
∑

n=p
j1
1 ···p

jr
r

an
ns

is absolutely convergent, where n varies over the positive integers whose prime factors
are among p1, . . . , pr. The sum of this series is equal to

∏r
i=1 fpi(s). By assumption, Sr

converges to f(s), hence we get the assertion in the proposition.
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Suppose now that all am ≥ 0, and that
∏

p

(∑
m≥0

apm

pms0

)
is convergent whenever

s0 ∈ R with s0 > α. Let us fix such s0. With the above notation, we see that Sr is finite,

and Sr ≤
∏

p

(∑
m≥0

apm

pms0

)
. Therefore the sequence (Sr)r≥1 is convergent, and its limit is

clearly equal to
∑

n≥1
an
ns0

. This implies that ρ = ρ+ ≤ α. �

Corollary 4.12. Under the assumptions in the above proposition, suppose that the se-
quence (an)n≥1 is strongly multiplicative, in the sense that amn = aman for all positive
integers m and n, and a0 = 1. In this case we have the decomposition∑

n≥1

an
ns

=
∏
p

1

1− app−s

for every s ∈ C with Re(s) > ρ+.

Proof. The assertion follows from the formula in Proposition 4.11, noting that for every
prime p we have ∑

m≥0

apm

pms
=
∑
m≥0

amp
pms

=
1

1− app−s
.

�

Example 4.13. In the case of the Riemann zeta function we have ρ+ = ρ = 1, and we
get the product decomposition

ζ(s) =
∏
p

1

1− p−s

for every s ∈ C with Re(s) > 1. Note also that since the product is absolutely convergent,
it follows from Lemma 4.8 that ζ(s) 6= 0 for every s with Re(s) > 0.

Let us recall the notion of product of Dirichlet series. Given ` Dirichlet series fi =∑
n≥1

an,i
ns

for 1 ≤ i ≤ `, let us consider the product of the fi defined by g =
∑

n≥1
bn
ns

, where
bn =

∑
d1···d`=n ad1,1 · · · ad`,`, the sum being over all tuples of positive integers (d1, . . . , d`)

such that d1 · · · d` = n.

Proposition 4.14. With the above notation, the following hold:

i) We have the following relation between the abscissas of absolute convergence

ρ+(g) ≤ max
i
ρ+(fi),

and for every s ∈ C with Re(s) > maxi ρ
+(fi), we have g(s) =

∏`
i=1 fi(s).

ii) If each sequence (an,i)n≥1 is multiplicative, and if we consider the Euler product

decompositions fi =
∏

p f
(p)
i , then the sequence (bn)n≥1is multiplicative, and the

Euler product decomposition of g is given by g =
∏

p g
(p), where g(p) =

∏`
i=1 f

(p)
i .

iii) If h =
∑

n≥1
cn
ns

is a Dirichlet series such that h(s) =
∏`

i=1 fi(s) for Re(s) � 0,

then bn = cn for every n. In particular, we have ρ+(h) ≤ maxi ρ
+(fi).
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Proof. All the assertions are straightforward to prove, so we leave them as an exercise.
We only note that iii) is a consequence of i) and of Proposition 4.4. �

In what follows we make some considerations that will be useful in the next section,
when dealing with zeta functions of arithmetic schemes. Suppose that f is a formal power
series f =

∑
m≥0 amt

m ∈ C[[t]]. Given a prime p, we may associate to f the Dirichlet

series f̃ =
∑

m≥0
am
pms

. If r(f) is the radius of convergence of f , then f̃(s) is absolutely

convergent for Re(s) > − log(r(f))
log p

, and it is divergent for Re(s) < − log(r(f))
log p

. Therefore

ρ(f̃) = ρ+(f̃) = − log(r(f))
log p

.

If f(0) = 0, then we may consider g = exp(f). It is clear that r(g) ≥ r(f), and it

follows from the above formulas that ρ(g̃) ≤ ρ(f̃).

Suppose now that for every prime p we have a formal power series fp =
∑

m≥1 a
(p)
m tm

with am ∈ R≥0 for all m, and consider as above the corresponding Dirichlet series f̃p =

fp(1/p
s) =

∑
m≥0

a
(p)
m

pms
. Let gp = exp(fp), and g̃p = gp(1/p

s).

Proposition 4.15. With the above notation, suppose that the C > 0 and α ∈ R, and
p0 ∈ Z>0 are such that

a(p)m ≤

{
Cpmα, if p ≥ p0,m ≥ 1;

Cpm(α+1), if p < p0,m ≥ 1.

In this case
∏

p g̃p(s) is the Euler product decomposition of a Dirichlet series with non-

negative coefficients, which is absolutely convergent in the half-plane {s | Re(s) > α+ 1}.

Proof. Let us write gp =
∑

m≥0 b
(p)
m tm, so that g̃p(s) =

∑
m≥0

b
(p)
m

pms
. Note that b

(p)
0 = 1, and

since a
(p)
m ≥ 0 for all m and p, we have b

(p)
m ≥ 0 for all m and p. For a positive integer n

having the prime decomposition n = pm1
1 · · · pmrr , we put bn = b

(p1)
m1 · · · b

(pr)
mr . Let us consider

the Dirichlet series g(s) =
∑

n≥1
bn
ns

.

It is enough to show that the product
∏

p g̃p(s) is convergent for every s ∈ R with
s > α + 1. Indeed, we can then apply Proposition 4.11 to deduce that this is the Euler
product decomposition of g(s), whose abscissa of convergence is ≤ α + 1.

Let us fix s ∈ R with s > α + 1. Using the definition of the g̃p, we see that it is

enough to show that
∑

p f̃p(s) is convergent. Note that this is a series with nonnegative
terms, and by assumption we have∑

p<p0

∑
m≥1

a
(p)
m

pms
≤ C ·

∑
p<p0

∑
m≥1

pm(α−s+1) = C ·
∑
p<p0

1

ps−α−1 − 1
<∞, and

∑
p≥p0

∑
m≥1

a
(p)
m

pms
≤ C ·

∑
p≥p0

∑
m≥1

pm(α−s) = C ·
∑
p≥p0

1

ps−α − 1
≤ 2C ·

∑
p≥p0

1

ps−α
<∞.

Since the above series are convergent, this completes the proof. �
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5. The zeta function of an arithmetic scheme

In this section we consider arithmetic schemes, that is, schemes of finite type over
Z. For every such scheme X, we denote by Xp the fiber of X over the point pZ in SpecZ.
This is a scheme of finite type over Fp. The following lemma describes the set Xcl of closed
points of an arithmetic scheme X.

Lemma 5.1. If X is a scheme of finite type over Z, and x ∈ X is a point, then x is a
closed point if and only if its residue field k(x) is a finite field. In this case, the image of
x in SpecZ is a closed point.

Proof. Let π : X → SpecZ denote the canonical morphism. If k(x) is a finite field, then
k(π(x)) is finite too, being a subfield of k(x), hence π(x) is a closed point pZ. In this case
we know that x is a closed point in the fiber Xp, hence it is closed in X.

Conversely, suppose that x is closed in X. If U = SpecA is an affine open neighbor-
hood of x, then x is closed in U , hence it corresponds to a maximal ideal m ⊂ A. If π(x) is
a closed point, then we are done: since x is a closed point on a scheme of finite type over
Fp, the residue field k(x) is finite. Suppose that π(x) is the generic point of SpecZ. The
field K = A/m is a finitely generated Z-algebra. In particular, it is a finitely generated
Q-algebra, hence it is finite over Q by Nullstellensatz. If B is the integral closure of Z in
K, then B is a Dedekind domain with field of fractions K. Since K is a finitely generated
Z-algebra, it is also finitely generated over B, hence it is equal to B[1/b] for some nonzero
b ∈ B. However, b is only contained in finitely many prime ideals, while B has infinitely
many such ideals. Therefore B[1/b] can not be a field. This contradiction shows that π(x)
is a closed point. �

Let X be an arithmetic scheme. For every closed point x ∈ X, we put N(x) = |k(x)|.
Note that given any M , there are only finitely many closed points x ∈ X with N(x) ≤M .
Indeed, this condition bounds the characteristic of k(x), and we have seen in Lecture 2
that on every Xp there are only finitely many closed points with deg(k(x)/Fp) bounded.

A 0-cycle on X is an element of the free abelian group on the set of closed points
of X. We say that a 0-cycle α =

∑`
i=1mixi is effective if all mi are non-negative. In

this case, we put N(α) :=
∏

iN(xi)
mi . Note that if α is an effective cycle on Xp, then

N(α) = pdeg(α).

The zeta function LX of X is defined by LX(s) =
∑

n≥1
an
ns

, where an is the number
of effective 0-cycles α on X with N(α) = n (with the convention a1 = 1). Note that the
sequence (an)n≥1 is multiplicative: this is an easy consequence of the fact that for every
closed point x ∈ X, N(x) is a prime power, hence N(x) divides a product mn, with m
and n relatively prime if and only if it divides precisely one of m and n. Therefore we
have an Euler product decomposition of LX as LX(s) =

∏
p LX,p(s), where

LX,p(s) =
∑
n≥0

b
(p)
n

pns
,
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where b
(p)
n is the number of effective 0-cycles on Xp of degree n. It follows from Remark 3.4

in Lecture 2 that LX,p(s) = Z(Xp, p
−s) = LXp(s) (for a possibly non-reduced scheme W

of finite type over Fp, we put Z(W, t) = Z(Wred, t)).

Up to this point, the above Euler product only holds at a formal level, since we have
not proved yet that the above Dirichlet series converges in a nonempty half-plane. Our
main goal in this section is to prove this fact, to compute the abscissa of convergence, and
to show that the zeta function has a meromorphic continuation to a half-space contain-
ing the half-plane of convergence. Note that the above Dirichlet series has nonnegative
coefficients, so in this case the abscissa of absolute convergence is equal to the abscissa of
convergence.

As a warm-up, we start with the case of a scheme that lies over a closed point in
SpecZ. Suppose that Y is a scheme of finite type over Fp. Recall that in this case we have
LY (s) = Z(Y, p−s). The following is the main result in this setting.

Theorem 5.2. If Y is a scheme of finite type over Fp, then the Dirichlet series with
nonnegative coefficients LY (s) is convergent for Re(s) > r := dim(Y ), and it has no
zeros in this half-plane. Furthermore, if the r-dimensional irreducible components of Y
are Y1, . . . , Y`, and each Yj ×Fp Fp has mj irreducible components, then

LY (s) = L̃(s) ·
∏̀
j=1

1

1− pmj(r−s)
,

where L̃ is the sum of a Dirichlet series with abscissa of absolute convergence ≤ r − 1
2
.

In particular, the abscissa of convergence of LY is r, and LY admits a meromorphic
continuation to the half-plane {s | Re(s) > r − 1

2
}, such that the set of poles is given by{

r +
2πim

mjlog(p)
| m ∈ Z, 1 ≤ j ≤ `

}
.

Proof. Let f =
∑

e≥1
Ne
e
te, where Ne = |Y (Fpe)|, and g = exp(f), so that LY (s) = g(p−s).

We thus are in the setting discussed at the end of §4. It follows from Corollary 2.4 that

there is a constant αY > 0 such that Ne ≤ αY p
er for every e ≥ 1. This implies N

1/e
e ≤

α
1/e
Y pr, so that the radius of convergence R of f is ≥ p−r, and we thus obtain

ρ(LY ) = ρ+(LY ) = − log(R)

log p
≤ r.

Note also that if Re(s) > r, then LY (s) = exp(f(p−s)), hence it is nonzero. This proves
the first assertion in the theorem.

The second assertion is the deeper one, and for this we will make use the Lang-Weil
estimate. Let f1 =

∑`
i=1

∑
mi|e

mip
er

e
te and f2 = f − f1. Note that

f1 =
∑̀
i=1

∑
j≥1

pjmirtjmi

j
= −

∑̀
i=1

log(1− pmirtmi),
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hence exp(f1) =
∏`

i=1
1

1−prmi tmi . On the other hand, if we write f2 =
∑

m≥1
bm
m
tm, it follows

from Proposition 3.2 that there is a constant C > 0 such that |bm| ≤ Cp(r−
1
2
)m for all m.

Arguing as above, we see that the radius of convergence of f2 is ≥ p−r+
1
2 . Therefore the

abscissa of convergence of L̃(s) = exp(f2)(p
−s) is ≤ r − 1

2
, and we have

LY (s) = exp(f1)(p
−s) · exp(f2)(p

−s) = L̃(s) ·
∏̀
i=1

1

1− pmi(r−s)
.

Note also that if Re(s) > r − 1
2
, then L̃(s) = exp(f2(p

−s)) 6= 0. The last assertions in the
theorem are now easy consequences. �

Exercise 5.3. Let (mi)i∈I be positive integers, where I is a countable set, such that
for every M there are only finitely many i with mi ≤ M . Show that if the power series
f(t) =

∏
i∈I(1 − tmi)−1 ∈ Z[[t]] has radius of convergence R, then for every u ∈ C

with |u| < min{1, R} the product
∏

i∈I(1 − umi)−1 is absolutely convergent and f(u) =∏
i∈I(1− umi)−1.

Exercise 5.4. Show that if Y is a scheme of finite type over Fp, then for every s ∈ C

with Re(s) > dim(Y ) the product
∏

x∈Ycl (1−N(x)−s)
−1

is absolutely convergent, and

LY (s) =
∏

x∈Xcl
(1−N(x)−s)

−1
.

The case of an arithmetic scheme X whose irreducible components dominate SpecZ
is more involved. We begin by giving an upper-bound for the abscissa of convergence of
an arbitrary arithmetic scheme. This will be a consequence of the following complement
to Corollary 2.4.

Proposition 5.5. For every arithmetic scheme X of dimension r, there is a constant
cX > 0 and p0 such that for every prime p ≥ p0 and every e ≥ 1, we have

#X(Fpm) ≤

{
cXp

m(r−1), if p ≥ p0,m ≥ 1;

cXp
mr, if p < p0,m ≥ 1.

Proof. It is enough to show that there is cX and p0 such that #X(Fpm) ≤ cXp
m(r−1) for

all p ≥ p0 and m ≥ 1. Indeed, applying Proposition 3.2 to each Xp with p < p0, we see
that after possibly enlarging cX we have #X(Fpm) ≤ pmr for all p < p0 and m ≥ 1.

We first prove this assertion in the case when X is irreducible, and it is smooth
and projective over SpecZ[1/N ] for some positive integer N . Consider an embedding
X ↪→ Pn

Z[1/N ], and let d denote the degree of the fibers. In particular, for every prime p that
does not divide N , Xp ↪→ Pn

Fp
is a smooth closed subvariety of dimension r−1 and degree

d. In particular, Xp ×Fp Fp has ≤ d irreducible components. Applying Proposition 3.1 to
each connected component of X, we see that there is a positive constant cX such that
#X(Fpe) ≤ cXp

(r−1)e for every p that does not divide N , and every e ≥ 1.

We now consider the general case, that we prove by induction on r. If r = 0, then
Xp is empty for p� 0, and the assertion to prove is trivial. Suppose that r ≥ 1. Note first
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that we may assume that X is irreducible: if X1, . . . , X` are the irreducible components
of X, and if we can find cXi for every i, then it is enough to take cX =

∑`
i=1 cXi .

Suppose from now on that X is irreducible, and after replacing X by Xred we may
also assume that X is reduced. If X does not dominate SpecZ, then Xp is empty for
p � 0, hence the assertion to prove is trivial. We henceforth assume that X dominates
SpecZ.

Note that if X is birational to Y , for an integral scheme Y of finite type over SpecZ,
and if we can find cY as required, then we can also find cX . Indeed, if V is an open subset
of X isomorphic to an open subset of Y , then we can find cXrV by induction, and it is
enough to take cX = max{cY , cXrV }.

In particular, we may assume that X is projective over SpecZ. We apply Hironaka’s

theorem on resolution of singularities to find a projective birational morphism ϕQ : X̃Q →
X ×Z Q, with X̃Q nonsingular, hence smooth over Q. We can find a positive integer N

such that ϕQ is obtained by base-change from a projective birational morphism ϕ : X̃ →
X ×Z Z[1/N ], such that X̃ is smooth and projective over SpecZ[1/N ]. We have already

seen that the assertion in the proposition holds for X̃, and since X is birational to X̃, it
follows that we can find cX as required. This completes the proof of the proposition. �

Corollary 5.6. If X is an arithmetic scheme of dimension r, then the Dirichlet series
with nonnegative coefficients LX is convergent in {s | Re(s) > r}, and it has no zeros in
this region.

Proof. Let fp =
∑

e≥1
Ne(p)
e
te, where Ne(p) = #X(Fpe). It follows from Proposition 5.5

that there is a constant cX > 0 and p0 such that the series fp satisfy the conditions in
Proposition 4.15, with α = r−1. Since

∏
p exp(fp(p

−s)) is the Euler product corresponding

to LX , we deduce that LX(s) is (absolutely) convergent for Re(s) > r. Furthermore, each
of the factors of the Euler product is nonzero, hence LX(s) is nonzero in this half-plane. �

Remark 5.7. It follows from Corollary 5.6 and Proposition 4.11 that if X is an arithmetic
scheme of dimension r, then LX(s) =

∏
p LXp(s) whenever Re(s) > r. Furthermore, it fol-

lows from Exercise 5.4 that for every prime p, we have LXp(s) =
∏

x∈(Xp)cl (1−N(x)−s)
−1

,
and the product is absolutely convergent. We conclude using Exercise 4.10 that

LX(s) =
∏
x∈Xcl

(
1−N(x)−s

)−1
,

and the product is absolutely convergent.

Example 5.8. Let K be a number field and OK the ring of integers of K (that is,
the ring of elements of K that are integral over Z). The zeta function of K (also called
the Dedekind zeta function of K) is ζK := LSpecOK . Corollary 5.6 implies that ζK is
(absolutely) convergent in the half-plane {s | Re(s) > 1}. We deduce from the previous
remark that we have a product description in this region

ζK(s) =
∏

P∈Spec(OK)

(
1− 1

N(P )s

)−1
.
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The description of ζK as a Dirichlet series can also be written as

ζK(s) =
∑
a⊂OK

1

N(a)s
,

where the sum is over all proper nonzero ideals a of OK , and where N(a) = |OK/a| (by
the unique factorization of an ideal in OK as a product of prime ideals, we can identify
nonzero ideals in OK with effective cycles on SpecOK , such that the two definitions of
N(a) are compatible). Of course, if K = Q, then ζK is the Riemann zeta function.

Example 5.9. Recall that by Corollary 3.8 in Lecture 2 we have

Z(Pn
Fp , t) =

1

(1− t)(1− pt) · · · (1− pnt)
.

Therefore the zeta function of Pn
Z is given by

LPnZ
(s) =

∏
p

Z(Pn
Fp , p

−s) =
n∏
i=0

∏
p

1

(1− pi−s)
=

n∏
i=0

ζ(s− i).

Remark 5.10. If X is an arithmetic scheme, Y is a closed subscheme of X, and U = Xr
Y , then LX(s) = LY (s)LU(s) for all s > dim(X). Indeed, this is a consequence of the Euler
product description of the zeta function, and of the fact that Z(Xp, t) = Z(Yp, t) ·Z(Up, t)
for all primes p. In particular, we see that LX is the product of LY and LU in the sense
of Proposition 4.14, and therefore ρ(LX) ≤ max{ρ(LY ), ρ(LU)}.

Our last result in this section describes, in particular, the abscissa of convergence
of zeta functions of arithmetic schemes.

Theorem 5.11. If X is an arithmetic scheme of dimension r, then the following hold:

i) The abscissa of convergence of LX is ρ = r.
ii) LX admits a meromorphic continuation to the half-plane {s | Re(s) > r − ε}, for

some ε > 0, and s = r is a pole.
iii) If X is irreducible and dominates SpecZ, then the only pole of LX in the half-plane
{s | Re(s) > r − ε}, with ε as in ii), is at s = r, and this occurs with order one.

In fact, as we will explain below, one can show that one can take ε = 1
2

in the
theorem. The key ingredient that we will need, in addition to the Lang-Weil estimate, is
given by the special case of the ring of integers in a number field. This is the content of
the following proposition.

Proposition 5.12. If K is a number field with deg(K/Q) = `, then ζK admits a mero-
morphic continuation to the half-plane {s | Re(s) > 1− 1

`
}. In this region the only pole is

s = 1, and this occurs with order one. In particular, the abscissa of convergence of ζK is
ρ = 1.

Proof. We will use the following result from algebraic number theory: there is a positive
number αK such that if i(m) denotes the number of proper nonzero ideals I in OK with
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N(I) ≤ m, then

i(m)− αKm
m1− 1

`

is bounded see [Mar, Theorem 39]. This implies that if we write ζK−αKζ(s) as a Dirichlet

series
∑

m≥1
bm
ms

, then there is a positive constant C such that |b1+. . .+bm| ≤ Cm1− 1
` for all

m. Proposition 4.5 implies that ζK−αKζ is analytic in the half-plane {s | Re(s) > 1− 1
`
}.

On the other hand, by Proposition 4.6 we know that ζ is meromorphic in the half-plane
{s | Re(s) > 0}, with a unique (simple) pole at s = 1. This gives the assertions in the
proposition concerning ζK . �

One can show that, in fact, ζK admits a meromorphic continuation to C, such that
the only pole is at s = 1. However, the proof is quite involved, so we refer to [Lang,
Chapter XIII] for this result.

Proof of Theorem 5.11. Note first that if U is an open subset of X such that dim(W ) <
dim(X), where W = X r U , then the theorem holds for X if and only if it holds for U .
Indeed, LX(s) = LW (s)LU(s) by Remark 5.10. Since dim(W ) ≤ r − 1, the function LW
is analytic in {s | Re(s) > r − 1} by Corollary 5.6, and it has no zeros in this half-plane.
Therefore the assertions in the theorem hold for X if and only if they hold for U . This
implies, in particular, that if X and Y are birational integral schemes, then the theorem
holds for X if and only if it holds for Y .

Given any X, let us consider an affine open subset U of X with dim(X r U) < r,
such that U is isomorphic to the disjoint union of some Ui, with each Ui irreducible of
dimension r. Since L(U, s) =

∏
i LUi(s), it is clear that if each Ui satisfies properties i)

and ii), then so does U , and therefore so does X. This shows that we may assume that X
is affine and irreducible, and after replacing X by Xred, we may assume that X is integral.

If X does not dominate SpecZ, then X = Xp for some p. In this case, Theorem 5.2
shows that properties i) and ii) are satisfied with ε = 1

2
. Hence from now on we may

assume that X dominates SpecZ. Arguing as in the proof of Proposition 5.5, we find
an integral scheme Y that is smooth and projective over some SpecZ[1/N ], connected,
and that is birational to X. As we have seen, it is enough to show that Y satisfies the
assertions in the theorem.

Let π : Y → SpecZ[1/N ] be the structure morphism. After possibly replacing N by
a multiple, we may assume that π∗(OY ) is free (say, of rank m) and π∗(OYp) ' π∗(OY )⊗
Z/pZ for all primes p that do not divide N . Therefore A = Γ(Y,OY ) is an integral domain,
free of rank m over Z[1/N ]. If K = A⊗Z Q, then K is a domain that is a finite extension
of Q, hence it is a number field, equal to the fraction field of A. If OK is the ring of
integers in K, then we have an inclusion A ⊆ OK [1/N ]. After possibly replacing N by a
multiple, we may assume that A = OK [1/N ] and that OK [1/N ] is smooth over Z[1/N ].

Suppose that p is a prime that does not divide N , and let us consider its prime
decomposition in OK :

pOK = P1 · . . . · P`,
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and let mi = [OK/Pi : Fp]. Note that the fiber Yp is a smooth, (r − 1)-dimensional

projective variety, with ` irreducible components Y
(1)
p , . . . , Y

(`)
p , with Y

(i)
p ×SpecFp SpecFp

having mi irreducible components.

For every prime p that does not divide N , let fp =
∑

e≥1
|X(Fpe )|

e
te and

f (1)
p =

∑
e≥1

| SpecOK(Fpe)|
e

te =
∑̀
i=1

∑
mi|e

mi

e
te.

If we write f
(2)
p (t) = fp(t) − f (1)

p (pr−1t) =
∑

e≥1
b
(p)
e

e
te, then we apply Proposition 3.1 to

every connected component of Yp to deduce that we have a positive constant C such

that |b(p)e | ≤ Cp(r−
1
2
)e for all e and all primes p that do not divide N . We deduce from

Proposition 4.15 that
∏

p 6 |N exp(f
(2)
p )(p−s) is the Euler product of a Dirichlet series L̃Y that

is absolutely convergent in the half-plane {s | Re(s) > r− 1
2
}, and which has no zeros in this

region. On the other hand, if we put Y ′ = SpecOK [1/N ], then LY (s) = LY ′(s−r+1)L̃Y (s).

Note that ζK(s) = LY ′(s)
∏

j

(
1− 1

N(Pj)s

)−1
, where the Pj are the (finitely many) prime

ideals of OK that lie over primes in Z dividing N . It follows from Proposition 5.12 that
LY ′(s) is a meromorphic function in the half-plane {s | Re(s) > 1 − 1

d
}, where d =

deg(K/Q), and its only pole in this region is at s = 1, and this has order one. We deduce
that properties i), ii), and iii) are satisfied by LY , where we may take ε = 1/d. This
completes the proof of the theorem. �

Remark 5.13. If one assumes the fact that ζK has a meromorphic continuation to the
half-plane {s | Re(s) > 1

2
}, we see that the argument in the proof of Theorem 5.11 shows

that for every arithmetic scheme of dimension r, the zeta function LX can be extended
as a meromorphic function to {s | Re(s) > r − 1

2
}.

Remark 5.14. If X is any arithmetic scheme of dimension r, then the order of s = r as a
pole of LX is equal to the number of r-dimensional irreducible components of X. Indeed,
if X1, . . . , X` are the r-dimensional irreducible components of X, then the order of s = r
as a pole of LX is the sum of the corresponding orders of s = r as a pole of each LXj .
These orders in turn can be computed using Theorem 5.2 (for those Xj that lie in a fiber
over SpecZ) and Theorem 5.11 (for those Xj that dominate SpecZ).

It is conjectured that for every arithmetic scheme X, the zeta function LX admits
a meromorphic continuation to C. This seems, however, to be completely out of reach
at the moment. One important case is when X ×Z Q is an elliptic curve, in which case
the assertion is known to follow from the famous Taniyama-Shimura conjecture, proved
in [Wil], [TW], and [BCDT].
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