
LECTURE 8. THE GROTHENDIECK RING OF VARIETIES AND
KAPRANOV’S MOTIVIC ZETA FUNCTION

In this lecture we give an introduction to the Grothendieck ring of algebraic varieties,
and discuss Kapranov’s lifting of the Hasse-Weil zeta function to this Grothendieck ring.
One interesting feature is that this makes sense over an arbitrary field. We will prove the
rationality of Kapranov’s zeta function for curves by a variant of the argument used in
Lecture 4 for the Hasse-Weil zeta function. We will end by discussing the results of Larsen
and Lunts on Kapranov zeta functions of algebraic surfaces.

1. The Grothendieck ring of algebraic varieties

In this section we recall the definition and the basic properties of the Grothendieck
ring of algebraic varieties. Let k be an arbitrary field. The Grothendieck group K0(Var/k)
of varieties over k is the quotient of the free abelian group on the set of isomorphism
clases of varieties over k, by relations of the form

[X] = [Y ] + [X r Y ],

where Y is a closed subvariety of the variety X (here [X] denotes the image of the variety
X in K0(Var/k)). Note that the above relation implies [∅] = 0.

In fact, K0(Var/k) is a commutative ring, with the product given by

[X] · [Y ] = [(X × Y )red],

where the product on the right is understood to be over Spec k. It is clear that this induces
a bilinear map K0(Var/k)×K0(Var/k)→ K0(Var/k) that is commutative and associative,
and has unit Spec k.

The class of A1
k in K0(Var/k) is denoted by L. Therefore [An

k ] = Ln. The usual
decomposition Pn

k = Pn−1
k tAn

k implies by induction on n that [Pn
k ] = 1 + L + . . .+ Ln.

Proposition 1.1. Suppose that X is a variety over k, and we have a decomposition
X = Y1 t . . . t Yr, where all Yi are locally closed subvarieties of X. In this case [X] =
[Y1] + . . .+ [Yr].

Proof. We argue by induction on dim(X) (the case dim(X) = 0 being trivial), and then
by induction on the number of irreducible components of X of maximal dimension. Let
Z be an irreducible component of X of maximal dimension, and ηZ its generic point. If i
is such that ηZ ∈ Yi, then Z ⊆ Yi, and since Yi is open in Yi, it follows that there is an
open subset U of X contained in Yi ∩Z (for example, we may take to be the complement
in Yi ∩ Z of all irreducible components of X different from Z). By definition, we have

(1) [Yi] = [U ] + [Yi r U ] and [X] = [U ] + [X r U ].
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On the other hand, either dim(XrU) < dim(X), or dim(XrU) = dim(X) and XrU has
fewer irreducible components of maximal dimension than X does. Applying the induction
hypothesis to the decomposition X r U = (Yi r U) t

⊔
j 6=i Yj, we have

(2) [X r U ] = [Yi r U ] +
∑
j 6=i

[Yj].

By combining (1) and (2), we get the formula in the proposition. �

Given a variety X over k, we want to define the class in K0(Var/k) of a constructible
subset of X. This is achieved using the following easy lemma.

Lemma 1.2. Any constructible subset W of a variety X over k can be written as a finite
disjoint union of locally closed subsets.

Proof. We prove this by induction on d = dim(W ), the case d = 0 being trivial. Let
us write W = W1 ∪ . . . ∪ Wr, with all Wi locally closed, hence W = W1 ∪ . . . ∪ Wr.
After replacing each Wi by its irreducible decomposition, we may assume that all Wi

are irreducible. After renumbering, we may assume that W1, . . . ,Ws are the irreducible

components of W . Since each Wi is open in Wi, the set U =
⋃s
i=1

(
Wi r

⋃
j 6=iWj

)
is open

and dense in W , and it is contained in W . If V = W r U , then V is constructible, and
dim(V ) < dim(W ), hence by induction we have a decomposition V = V1 t . . . t Vs, with
each Vi locally closed in X. Therefore we have a decomposition W = U t V1 t . . .t Vs, as
required. �

Suppose now that X is a variety over k, and W is a constructible subset of X. By
the above lemma, there is a disjoint decomposition W = W1 t . . . tWr, with each Wi

locally closed in X. We put [W ] :=
∑r

i=1[Wi].

Proposition 1.3. With the above notation, the following hold:

i) The definition of [W ], for W constructible in X, is independent of the disjoint
decomposition.

ii) If W1, . . . ,Ws are disjoint constructible subsets of X, and W =
⋃
iWi, then [W ] =∑s

i=1[Wi].

Proof. Suppose that we have two decompositions into locally closed subsets

W = W1 t . . . tWr and W = W ′ t . . . tW ′
s.

Let us also consider the decomposition W =
⊔
i,j(Wi∩W ′

j). It follows from Proposition 1.1

that [Wi] =
∑s

j=1[Wi ∩W ′
j ] for every i, and [W ′

j ] =
∑r

i=1[Wi ∩W ′
j ] for every j. Therefore

r∑
i=1

[Wi] =
r∑
i=1

s∑
j=1

[Wi ∩W ′
j ] =

s∑
j=1

r∑
i=1

[Wi ∩W ′
j ] =

s∑
j=1

[W ′
j ].
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This proves i). The assertion in ii) follows from i): if we consider disjoint unions Wi =
Wi,1 t . . .tWi,mi

for every i, with each Wi,j locally closed in X, then W =
⊔
i,jWi,j, and

[W ] =
∑
i,j

[Wi,j] =
∑
i

[Wi].

�

A morphism f : X → Y is piecewise trivial, with fiber F , if there is a decomposition
Y = Y1 t . . . t Yr, with all Yi locally closed in Y , such that f−1(Yi) ' Yi × F for all i.

Proposition 1.4. If f : X → Y is piecewise trivial with fiber F , then [X] = [Y ] · [F ] in
K0(Var/k).

Proof. By assumption, there is a decomposition Y = Y1 t . . . t Yr into locally closed
subsets such that [f−1(Yi)] = [F ] · [Yi]. By Proposition 1.1 we have [X] =

∑
i[f
−1(Yi)] and

[Y ] =
∑

i[Yi], hence we get the assertion in the proposition. �

Example 1.5. It is clear that if E is a vector bundle on Y of rank n, then E → Y
is piecewise trivial with fiber An

k and P(E) → Y is piecewise trivial with fiber Pn−1
k .

Therefore [E] = [Y ] · Ln and [P(E)] = [Y ](1 + L + . . .+ Ln−1).

The following lemma is an immediate consequence of the definitions.

Lemma 1.6. If k′/k is a field extension, then we have a ring homomorphism K0(Var/k)→
K0(Var/k′), that takes [X] to [(X ×k k′)red] for every variety X over k.

An Euler-Poincaré characteristic for varieties over k is a map χ that associates to a
variety X over k an element χ(X) in a group A, such that if Y is a closed subvariety of
X, we have χ(X) = χ(Y )+χ(XrY ). Note that the map taking X to [X] ∈ K0(Var/k) is
the universal Euler-Poincaré characteristic: every Euler-Poincaré characteristic as above
is induced by a unique group homomorphism χ : K0(Var/k)→ A. If A is a ring, then the
Euler-Poincaré characteristic is called multiplicative if χ is a ring homomorphism.

Example 1.7. If k is a finite field, then for every finite extension K/k we have a multi-
plicative Euler-Poicaré characteristic with values in Z, that takes X to |X(K)|. One can
put all these together in a group homomorphism

K0(Var/k)→ (1 + tZ[[t]], ·), [X]→ Z(X, t).

Example 1.8. If k = C, then we have a multiplicative Euler-Poincaré characteristic that
associates to X the usual Euler-Poincaré characteristic for singular cohomology χtop(X) =∑

i≥0(−1)i dimQH
i(Xan,Q) (compare with the more refined invariant in Example 1.13

below). The fact that χtop(X) gives an Euler-Poincaré characteristic is a consequence
of the fact that χtop(X) is also equal to the Euler-Poincaré characteristic for compactly
supported cohomology χctop(X) :=

∑
i≥0(−1)i dimQH

i
c(X

an,Q) (see [Ful, p. 141-142]).
Indeed, if Y is a closed subvariety of the complex variety X, and U = X r Y , then there
is a long exact sequence for cohomology with compact supports

. . .→ H i
c(U

an,Q)→ H i
c(X

an,Q)→ H i
c(Y

an,Q)→ H i+1
c (Uan,Q)→ . . . ,

which implies χctop(X) = χctop(U) + χctop(Y ).
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The most convenient way of constructing Euler-Poincaré characteristics when the
ground field is algebrically closed of characteristic zero involves a presentation ofK0(Var/k)
due to Bittner [Bit]. The following lemma is elementary (and we have seen some of its
avatars before).

Lemma 1.9. If char(k) = 0, then K0(Var/k) is generated by classes of nonsingular,
connected, projective varieties over k. More precisely, given any irreducible variety X of
dimension n, there is a nonsingular, irreducible, projective variety Y that is birational to
X such that [X] − [Y ] =

∑N
i=1mi[Wi], for some smooth, projective, irreducible varieties

Wi of dimension < n, and some mi ∈ Z.

Proof. Note first that the second assertion implies the first. Indeed, it is enough to show
by induction on n that for every n-dimensional variety W over k, we have [W ] ∈ K ′0,
where K ′0 is the subgroup of K0(Var/k) generated by classes of nonsingular, connected,
projective varieties. The assertion is clear if n = 0. For the induction step, given W
with irreducible components W1, . . . ,Wr, let Ui = Wi r

⋃
j 6=iWj, and U =

⋃r
i=1 Ui. Since

dim(W r U) < n, it follows by induction that [W r U ] ∈ K ′0, and since [U ] =
∑r

i=1[Ui]
we see that it is enough to show that every [Ui] lies in K ′0. This is a consequence of the
second assertion in the lemma.

We now prove the second assertion in the lemma by induction on n = dim(X). Let
X ′ be an irreducible projective variety that is birational to X. By Hironaka’s theorem on
resolution of singularities, there is a birational morphism f : Y → X ′, with Y nonsingular,
connected, and projective. Since X and Y are birational, we can find isomorphic open
subsets U ⊆ X and V ⊆ Y , so that we have

(3) [X]− [Y ] = [X r U ]− [Y r V ],

and dim(XrV ), dim(Y rU) < n. Arguing as above, we see that the induction hypothesis
implies that both [X rU ] and [Y rV ] can be written as linear combinations of classes of
nonsingular, irreducible, projective varieties of dimension < n, with integer coefficients.
Using (3), we obtain the assertion in the lemma about X. �

Bittner’s theorem shows that with respect to the system of generators described in
the lemma, the relations are generated by the ones coming from blow-ups with smooth
centers.

Theorem 1.10. ([Bit]) Let k be an algebraically closed field of characteristic zero. The
kernel of the natural morphism from the free abelian group on isomorphism classes of
smooth, connected, projective varieties over k to K0(Var/k) is generated by the following
elements:

i) [∅]
ii) ([BlYX]− [E])− ([X]− [Y ]),

with X and Y are smooth, connected, projective varieties, with Y a subvariety of X, and
where BlYX is the blow-up of X along Y , with exceptional divisor E.
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We do not give the proof here, but only mention that the main ingredient is the
following Weak Factorization Theorem of Abramovich, Karu, Matsuki, and W lodarczyk.

Theorem 1.11. ([AKMW]) If k is an algebraically closed field of characteristic zero,
then every birational map between two smooth projective varieties over k can be realized
as a composition of blow-ups and blow-downs of smooth irreducible centers on smooth
projective varieties.

Example 1.12. Let us show that if k is algebraically closed, of characteristic zero, then
there is a (unique) Euler-Poincaré characteristic Q with values in Z[t] such that for every
smooth projective variety X, we have

Q(X, t) =

dim(X)∑
i=0

(−1)ihi(X,OX)ti.

By Theorem 1.10, it is enough to show that if X and Y are smooth, connected, projective
varieties, with Y a closed subvariety of X, and if W is the blow-up of X along Y , with
exceptional divisor E, then Q(W, t) − Q(E, t) = Q(X, t) − Q(Y, t). If p : W → X and
q : E → Y are the natural projections, then Rip∗(OW ) = 0, and Riq∗(OE) = 0 for all
i > 0, while p∗(OW ) = OX and q∗(OE) = OY . We thus have isomorphisms

Hj(X,OX) ' Hj(W,OW ), Hj(Y,OY ) ' Hj(E,OE)

for all j ≥ 0, which imply Q(W, t) = Q(X, t) and Q(E, t) = Q(Y, t).

Example 1.13. A more refined example of an Euler-Poincaré characteristic is given by the
Hodge-Deligne polynomial of algebraic varieties. This is an Euler-Poincaré characteristic
of varieties over an algebraically closed field k of characteristic zero that takes values in
Z[u, v], such that for a smooth projective variety X, E(X, u, v) is the Hodge polynomial

dim(X)∑
p,q=0

(−1)p+qhp,q(X)upvq,

where hp,q(X) = hq(X,Ωp
X). Note that with the notation in the previous example, we

have Q(X, t) = E(X, 0, t). The original definition of the Hodge-Deligne polynomial (over
C) uses the mixed Hodge structure on the singular cohomology with compact supports
of complex algebraic varieties. It would be nice to give an elementary argument using
Theorem 1.10, as in the previous example.

The polynomial Pvir(X, t) := E(X, t, t) is the virtual Poincaré polynomial of X.
Note that if k = C, then this polynomial is characterized by the fact that it induces a
group homomorphism K0(Var/C) → Z[t], and if X is a smooth projective variety, then
Pvir(X, t) is the usual Poincaré polynomial of X, given by

∑
i≥0(−1)i dimQH

i(X,Q)ti

(this is a consequence of the Hodge decomposition for smooth projective varieties). In
particular, we see that PX(1) = χtop(X).

Exercise 1.14. Use the Künneth formula to show that the Hodge-Deligne polynomial is
a multiplicative Euler-Poincaré characteristic.
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Example 1.15. If X = P1, then h0,0(X) = h1,1(X) = 1 and h1,0(X) = h0,1(X) = 0, hence
E(P1, u, v) = 1 + uv, and therefore E(A1, u, v) = E(P1, u, v) − E(Spec k, u, v) = uv. It
follows from the previous exercise that E(An, u, v) = (uv)n.

Remark 1.16. Recall that if X is a smooth projective complex variety, then we have
the following symmetry of the Hodge numbers: hp,q(X) = hq,p(X). This implies that
E(Y, u, v) = E(Y, v, u) for every variety over an algebraically closed field of characteristic
zero.

Exercise 1.17. Let k be an algebraically closed field of characteristic zero. Show that if
X is a variety iver k, then E(X, u, v) is a polynomial of degree 2 dim(X), and the term
of maximal degree is m(uv)dim(X), where m is the number of irreducible components of X
of maximal dimension.

Exercise 1.18. Show that if X and Y are varieties over a field k such that [X] = [Y ]
in K0(Var/k), then dim(X) = dim(Y ). Hint: in characteristic zero, one can use the
previous exercise; in positive characteristic, reduce to the case k = Fp, and then use the
Lang-Weil estimates (in fact, the characteristic zero case can also be reduced to positive
characteristic).

As an application of Bittner’s result, we give a proof of a result of Larsen and Lunts
[LL2] (see also [Sa]), relating the Grothendieck group of varieties with stable birational
geometry.

We keep the assumption that k is an algebraically closed field of characteristic zero.
Recall that two irreducible varieties X and Y are stably birational if X ×Pm and Y ×Pn

are birational for some m,n ≥ 0.

Let SB/k denote the set of stably birational equivalence classes of irreducible alge-
braic varieties over k. We denote the class of X in SB/k by 〈X〉. Note that SB/k is a
commutative semigroup, with multiplication induced by 〈X〉 · 〈Y 〉 = 〈X × Y 〉. Of course,
the identity element is Spec k.

Let us consider the semigroup algebra Z[SB/k] associated to the semigroup SB/k.

Proposition 1.19. There is a unique ring homomorphism Φ: K0(Var/k) → Z[SB/k]
such that Φ([X]) = 〈X〉 for every smooth, connected, projective variety X over k.

Proof. Uniqueness is a consequence of Lemma 1.9. In order to prove the existence of a
group homomorphism Φ as in the proposition, we apply Theorem 1.10. This shows that
it is enough to check that whenever X and Y are smooth, connected, projective varieties,
with Y a closed subvariety of X, we have

〈BlY (X)〉 − 〈E〉 = 〈X〉 − 〈Y 〉,
where BlYX is the blow-up of X along Y , and E is the exceptional divisor. In fact, we
have 〈X〉 = 〈BlY (X)〉 since X and BlY (X) are birational, and 〈Y 〉 = 〈E〉, since E is
birational to Y ×Pr−1

k , where r = codimX(Y ).

In order to check that Φ is a ring homomorphism, it is enough to show that
Φ(uv) = Φ(u)Φ(v), where u and v vary over a system of group generators of K0(Var/k).
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By Lemma 1.9, we may take this system to consist of classes of smooth, connected, pro-
jective varieties, in which case the assertion is clear. �

Since 〈P1
k〉 = 〈Spec k〉, it follows that Φ(L) = 0, hence Φ induces a ring homomor-

phism
Φ: K0(Var/k)/(L)→ Z[SB].

Theorem 1.20. ([LL2]) The above ring homomorphism Φ is an isomorphism.

Proof. The key point is to show that we can define a map SB/k → K0(Var/k)/(L) such
that wheneverX is a smooth, connected, projective variety, 〈X〉 is mapped to [X] mod (L).
Note first that by Hironaka’s theorem on resolution of singularities, for every irreducible
variety Y over k, there is a nonsingular, irreducible, projective variety X that is isomor-
phic to Y . In particular 〈X〉 = 〈Y 〉. We claim that if X1 and X2 are stably birational
nonsingular, irreducible, projective varieties, then [X]− [Y ] ∈ (L).

Suppose that X1 × Pm and X2 × Pn are birational. It follows from Theorem 1.11
that X1 × Pm and X2 × Pn are connected by a chain of blow-ups and blow-downs with
smooth centers. Note that

[X1]− [X1 ×Pm] = −[X1] · L(1 + L + . . .+ Lm−1) ∈ (L).

Similarly, we have [X2] − [X2 × Pn] ∈ (L). Therefore in order to prove our claim, it is
enough to show the following: if Z and W are smooth, connected, projective varieties,
with Z a closed subvariety of W , then [BlZW ]− [W ] ∈ (L), where BlZ(W ) is the blow-up
of W along Z. Let r = codimW (Z), and let E be the exceptional divisor, so E ' P(N),
where N is the normal bundle of Z in W . Our assertion now follows from

[BlZ(W )]− [W ] = [E]− [Z] = [E ·Pr−1]− [E] = [E] · L(1 + L + . . .+ Lr−2).

We thus get a group homomorphism Ψ: Z[SB/k] → K0(Var/k)/(L) such that
Ψ(〈X〉) = [X] mod (L) for every smooth, connected, projective variety X. It is clear
that Φ and Ψ are inverse maps, which proves the theorem. �

We end this section by mentioning the following result of Poonen [Po]:

Theorem 1.21. If k is a field of characteristic zero, then K0(Var/k) is not a domain.

Sketch of proof. Let k denote an algebraic closure of k. We denote by AV/k the semi-
group of isomorphism classes of abelian varieties over k (with the product given again by
Cartezian product). Note that we have a morphism of semigroups SB/k → AB/k, that
takes 〈X〉 to Alb(X) for every smooth, connected, projective variety X over k, where
Alb(X) is the Albanese variety of X. Indeed, arguing as in the proof of Theorem 1.20,
we see that it is enough to show that Alb(X) = Alb(X × Pn) and Alb(X ′) = Alb(X) if
X ′ → X is the blow-up of the smooth, connected, projective variety X along a smooth
closed subvariety. Both assertions follow from the fact that any rational map Pm 99K A,
where A is an abelian variety, is constant. Therefore we have ring homomorphisms

K0(Var/k)→ K0(Var/k)→ Z[SB/k]→ Z[AV/k].
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The technical result in [Po] says that there are abelian varieties A and B over k such
that A×A ' B ×B, but Ak 6' Bk. In this case ([A]− [B])([A] + [B]) = 0 in K0(Var/k).
However, both [A] − [B] and [A] + [B] are nonzero in K0(Var/k), since their images in
Z[AV/k] are nonzero. Hence K0(Var/k) is not a domain. �

Remark 1.22. Note that the zero-divisors constructed in the proof of the above theorem
are nonzero in K0(Var/k)/(L). This suggests that the localization K0(Var/k)[L−1] might
still be a domain, but this is an open question.

2. Symmetric products of varieties and Kapranov’s motivic zeta function

We begin by recalling the definition of the symmetric products of an algebraic vari-
ety. For simplicity we work over a perfect field k. Let X be a quasiprojective variety over
k. For every n ≥ 1, we have a natural action of the symmetric group Sn on the product
Xn. Since Xn is again quasiprojective, by the results in the Appendix, we may construct
the quotient by the action of Sn. This is the symmetric product Symn(X). We make the
convention that Sym0(X) is Spec k. Note that since k is perfect, Xn is reduced, hence
Symn(X) is reduced too.

Example 2.1. For every n ≥ 1, there is an isomorphism Symn(A1
k) ' An

k . Indeed, the ring
of symmetric polynomials k[x1, . . . , xn]Sn ⊆ k[x1, . . . , xn] is generated as a k-algebra by
the elementary symmetric functions e1, . . . , en. Note that since dim(k[x1, . . . , xn]Sn) = n,
the polynomials e1, . . . , en are algebraically independent over k, hence Symn(A1

k) ' An
k .

Remark 2.2. Note that by Remark 1.5, for every field extension K/k (say, with K
perfect), we have Symn(X) ×k K ' Symn(X ×k K). In particular, if K is algebraically
closed, then Symn(X)(K) is in bijection with the set of effective zero-cycles on X ×k K
of degree n.

In order to define Kapranov’s motivic zeta function [Kap], we need some prepara-

tions. We will work with the quotient K̃0(Var/k) of K0(Var/k) by the subgroup generated
by the relations [X] − [Y ], where we have a radicial surjective morphism X → Y of va-
rieties over k. See Appendix, §3, for a review of radicial morphisms. Note that in fact

K̃0(Var/k) is a quotient ring of K0(Var/k): this follows from the fact that if f : X → Y is
surjective and radicial, then for every variety Z, the morphism f×IdZ : X×Z → Y ×Z is
surjective and radicial (since f×IdZ is the base-change of f with respect to the projection
Y × Z → Y ).

Proposition 2.3. If char(k) = 0, then the canonical morphism K0(Var/k)→ K̃0(Var/k)
is an isomorphism.

Proof. This is a consequence of the fact that if char(k) = 0 and f : X → Y is radicial
and surjective, then f is a piecewise isomorphism (see Appendix, Proposition 3.7), hence
[X] = [Y ] in K0(Var/k). �

Proposition 2.4. If k = Fq is a finite field, then the ring homomorphism K0(Var/k)→ Z

given by [X]→ |X(Fqe)| factors through K̃0(Var/k).
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Proof. We need to show that if f : X → Y is a radicial, surjective morphism of varieties
over Fq, then |X(Fqe)| = |Y (Fqe)|. This is a consequence of the fact that f gives a bijection
between the closed points of X and Y , such that for every x ∈ Xcl we have k(f(x)) = k(x)
(for this it is enough to note that k(f(x)) is a finite field, hence perfect, and therefore it
has no nontrivial purely inseparable extensions). �

The next proposition shows that the Grothendieck group of varieties over k can be
described in terms of quasiprojective varieties. Let Kqpr

0 (Var/k) be the quotient of the
free abelian group on the set of isomorphism classes of quasiprojective varieties over k,
modulo the relations

[X] = [Y ] + [X r Y ],

where X is a quasiprojective variety and Y is a closed subvariety of X. It is clear that we
have a group homomorphism Φ: Kqpr

0 (Var/k)→ K0(Var/k), such that Φ([X]) = [X]. We

similarly define K̃qpr(Var/k) as the quotient of Kqpr
0 (Var/k) by the relations [X] − [Y ],

where we have a surjective, radicial morphism of quasiprojective varieties f : X → Y . We

have a corresponding group homomorphism Φ̃: K̃qpr
0 (Var/k)→ K̃0(Var/k).

Proposition 2.5. Both Φ and Φ̃ are isomorphisms.

Proof. Let us define an inverse homomorphism Ψ: K0(Var/k) → Kqpr
0 (Var/k). Given a

variety X over k, we consider a disjoint decomposition X = V1 t . . . t Vr, where each Vi
is quasiprojective and locally closed in X (for example, we may even take the Vi to be
affine). In this case, we define Ψ([X]) =

∑r
i=1[Vi] ∈ K

qpr
0 (Var/k).

We need to show that the definition is independent of the decomposition we choose.
Suppose that X = W1 t . . . tWs is another such decomposition. We get a corresponding
decomposition X =

⊔
i,j(Vi tWj). We have an obvious analogue of Proposition 1.1 for

Kqpr
0 (Var/k), hence

[Vi] =
s∑
j=1

[Vi ∩Wj] and [Wj] =
r∑
i=1

[Vi ∩Wj] in Kqpr
0 (Var/k).

This gives the following equalities in Kqpr
0 (Var/k):

r∑
i=1

[Vi] =
r∑
i=1

s∑
j=1

[Vi ∩Wj] =
s∑
j=1

r∑
i=1

[Vi ∩Wj] =
s∑
j=1

[Wj].

Therefore Ψ([X]) is well-defined.

Suppose now that Y is a closed subvariety of X, and consider a decomposition
X = V1 t . . . t Vr for X as above. If U = X r Y , we get corresponding decompositions

Y =
r⊔
i=1

(Vi ∩ Y ), U =
r⊔
i=1

(Vi ∩ U),

from which we get that Ψ([X]) = Ψ([Y ]) + Ψ([U ]). Therefore Ψ gives a group homo-
morphism K0(Var/k) → Kqpr

0 (Var/k), and it is clear that Φ and Ψ are inverse to each
other.
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In order to show that Ψ induces an inverse to Φ̃, it is enough to show that if
f : X → Y is a surjective, radicial morphism, then there is a disjoint decomposition Y =
V1t . . .tVr such that all Vi and f−1(Vi) are quasiprojective (note that each f−1(Vi)→ Vi
is automatically radicial and surjective). Arguing by Noetherian induction, it is enough
to show that there is an affine open subset V ⊆ Y such that f−1(V ) is affine. If Y1, . . . , Ym
are the irreducible components of Y , we may replace Y by Y1 r

⋃
i≥2 Yi, and therefore

assume that Y is irreducible. Since f is bijective, there is only one irreducible component
of X that dominates Y , hence after restricting to a suitable open subset of Y , we may
assume that both X and Y are irreducible. In this case there is an open subset V of
Y such that f−1(V )red → Vred is a finite morphism (see [Har, Exercise II.3.7]). We may
assume that V is affine, in which case f−1(V )red is affine, hence f−1(V ) is affine by [Har,
Exercise III.3.1]. This completes the proof of the proposition. �

For every quasiprojective variety over X, the Kapranov zeta function of X is

Zmot(X, t) =
∑
n≥0

[Symn(X)]tn ∈ 1 + t · K̃0(Var/k)[t].

Proposition 2.6. The map [X] → Zmot(X, t), for X quasiprojective, defines a group
homomorphism

K0(Var/k)→ (1 + tK̃0(Var/k)[[t]], ·),
which factors through K̃0(Var/k).

The key ingredient is provided by the following lemma.

Lemma 2.7. If X is a quasiprojective variety, and Y ↪→ X is a closed subvariety with
complement U , then

[Symn(X)] =
∑
i+j=n

[Symi(Y )] · [Symj(U)] in K̃0(Var/k).

Proof. For nonnegative i and j with i + j = n, we denote by W i,j the locally closed
subset of Xn given by

⋃
g∈Sn

(Y i × U j)g. The W i,j give a disjoint decomposition of Xn

by locally closed subvarieties preserved by the Sn-action (in order to show that these sets
are disjoint and cover Xn, it is enough to consider the k-rational points, where k is an
algebraic closure of k). If π : Xn → Symn(X) is the quotient morphism, it follows that
the locally closed subvarieties π(W i,j) give a disjoint decomposition of Symn(X) in locally
closed subsets, hence

(4) [Symn(X)] =
∑
i+j=n

[π(W i,j)] in K0(Var/k).

For every pair (i, j) as above, consider the open subset Y i × U j of W i,j. For every
g, h ∈ Sn, the subsets (Y i × U j)g and (Y i × U j)h of W i,j are either equal, or disjoint.
Note also that the subgroup H consisting of all g ∈ G such that (Y i ×U j)g = Y i ×U j is
equal to Si × Sj ⊆ Sn. We may therefore apply Propositions 1.8 and 1.7 in the Appendix
to conclude that we have an isomorphism

W i,j/Sn ' Symi(Y )× Symj(U).
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On the other hand, Proposition 4.1 in the Appendix implies that the induced morphism
W i,j/Sn → π(W i,j) is radicial and surjective, hence

[π(W i,j)] = [(W i,j/Sn)] = [Symi(Y )] · [Symj(U)] in K̃0(Var/k).

Using this and (4), we obtain the statement in the lemma. �

Proof of Proposition 2.6. It follows from the lemma that if X is a quasiprojective variety,
Y is a closed subvariety of X, and U = X r Y , then

Zmot(X, t) =
∑
n≥0

[Symn(X)]tn =
∑
n≥0

∑
i+j=n

[Symi(Y )]·[Symj(U)]ti+j = Zmot(Y, t)·Zmot(U, t).

In light of Proposition 2.5, this proves the first assertion in the proposition. For the second
assertion, it is enough to show that if f : X → Y is a surjective, radicial morphism of
varieties over k, then the induced morphism Symn(f) : Symn(X) → Symn(Y ) is radicial
and surjective for every n ≥ 1. It is easy to see that the surjectivity of f implies that
Xn → Y n is surjective, and since Y n → Symn(Y ) is surjective, we deduce that Symn(f) is
surjective. In order to show that Symn(f) is radicial, it is enough to prove the injectivity
of

(5) Hom(SpecK, Symn(X))→ Hom(SpecK, Symn(Y ))

for every algebraically closed extension K of k. Using Remark 2.2, we may identify
Hom(SpecK, Symn(X)) with the quotient of X(K)n by the action of Sn. A similar de-
scription holds for Hom(SpecK, Symn(Y )), and the injectivity of X(K)→ Y (K) implies
the injectivity of (5). This completes the proof of the proposition. �

Remark 2.8. If X is not necessarily perfect, then we may still define the motivic zeta
function of a quasiprojective variety X by considering the reduced scheme corresponding
to Xn/Sn. All results in this section carry through in that setting. We preferred to make
the assumption that k is perfect in order to simplify the exposition, since we are mostly
interested in the case when k is either a finite field, or it has characteristic zero.

As a consequence of Proposition 2.6, we can define Zmot(X, t) for a variety over
k that is not necessarily quasiprojective. Indeed, we just apply the morphism in that

proposition to [X] ∈ K̃0(Var/k).

As we have seen in Proposition 2.4, when k = Fq is a finite field, we have a spe-

cialization map K̃0(Var/k)→ Z given by counting the number of Fq-rational points. The
following proposition shows that if we apply this specialization to Kapranov’s motivic
zeta function, we recover the Hasse-Weil zeta function.

Proposition 2.9. If k is a finite field, and X is a variety over k, then the image of
Zmot(X, t) in 1 + tZ[[t]] is equal to Z(X, t).

Proof. We may clearly assume that X is quasiprojective. By Remark 3.4 in Lecture 2, it
is enough to show that for every n ≥ 1, the number of effective 0-cycles on X of degree
n is equal to |Symn(X)(k)|. We have Symn(X)k ' Symn(Xk)by Remark 2.2. Note that if
g ∈ G = G(k/k) acts on Xk by σ, then g acts on Symn(X)k by Symn(σ). We can identify
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Symn(X)(k) with the points of Symn(X)(k) = X(k)n/Sn that are fixed by all g ∈ G. An
element of X(k)n/Sn corresponds to an effective 0-cycle of degree n on Xk̃, and this is
fixed by every g ∈ G if and only if it corresponds to an effective cycle of degree n on X
(see Proposition 2.5 in the Appendix). This completes the proof of the proposition. �

Proposition 2.10. If X is a variety over k, then Zmot(X×An
k , t) = Zmot(X,L

nt), where
L = [A1

k].

Proof. We only sketch the argument, which is due to Totaro [Go, Lemma 4.4]. It is enough
to prove the assertion when X is quasiprojective. Arguing by induction on n, it follows
that it is enough to prove the case n = 1. We need to show that for every n ≥ 1, we have

[Symn(X ×A1
k)] = [Symn(X)] · Ln in K̃0(Var/k).

We start by describing a general decomposition into locally closed subsets of Symn(X).
For every r ≥ 1, we denote by (Xr)◦ the complement in Xr of the union of the (big) di-
agonals (when r = 1, this is simply X). Given positive integers d1, . . . , dr with d1 ≤
. . . ≤ dr and

∑r
i=1 di = n, consider the locally closed embedding (Xr)◦ ↪→ Xn given by

∆d1 × . . .×∆dr , where ∆i : X → X i is the diagonal embedding. We denote the image of
(Xr)◦ by Xd1,...,dr . It is clear that for every σ, τ ∈ Sn, the subsets Xd1,...,drσ and Xd1,...,drτ
are either disjoint, or equal. We may thus apply Propositions 1.8 and 4.1 in the Appendix
to deduce that if H = {g ∈ G | Xd1,...,drg = Xd1,...,dr}, then Xd1,...,dr/H has a radicial

morphism onto its image in Symn(X), that we denote by X̃d1,...,dr . It is clear that when

we consider all tuples (d1, . . . , dr) as above, the X̃d1,...,dr give a partition of Symn(X) into

locally closed subsets (consider, for example, the k-valued points, where k is an algebraic
closure of k).

Suppose that m1 < m2 < . . . < ms are such that the first `1 of the di are equal to
m1, the next `2 of the di are equal to m2, and so on. In this case H = H1 o H2, where
H1 =

∏r
i=1 Sdi and H2 =

∏s
j=1 S`j . Each Sdi acts by permuting the entries of Xn in the

slots d1 + . . .+ di−1 + 1, . . . , d1 + . . .+ di, while S`j permutes the `j sets of mj entries of
Xn. Note that H1 acts trivially on Xd1,...,dr , hence Xd1,...,dr/H = Xd1,...,dr/H2.

We now consider the inverse image Wd1,...,dr = Xd1,...,dr×An
k of Xd1,...,dr in (X×A1

k)
n,

as well as its image W̃d1,...,dr in Symn(X ×A1
k). As above, we have a surjective, radicial

morphism Wd1,...,dr/H → W̃d1,...,dr . In order to complete the proof of the proposition, it is

enough to show that [Wd1,...,dr/H] = [(Xd1,...,dr/H)×An
k ] in K̃0(Var/k).

It follows from Proposition 1.10 in the Appendix thatWd1,...,dr/H ' (Wd1,...,dr/H1)/H2.
On the other hand, Proposition 1.7 in the Appendix and Example 2.1 give an isomorphism
Wd1,...,dr/H1 ' Xd1,...,dr ×

∏r
i=1A

di
k = Xd1,...,dr ×

∏s
j=1(A

mj

k )`j = Xd1,...,dr ×An
k . One can

show that since H2 acts without fixed points on Xd1,...,dr , the projection π : Xd1,...,dr →
Xd1,...,dr/H2 is étale, and we have a Cartezian diagram

Xd1,...,dr ×An
k

//

��

(Wd1,...,dr/H1)/H2

ϕ

��
Xd1,...,dr

// Xd1,...,dr/H2.
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One can show using this that ϕ has a structure of rank n vector bundle locally trivial in
the étale topology, and by Hilbert’s Theorem 90 [Se, p. 1.24], this is locally trivial also in
the Zariski topology. This gives [Wd1,...,dr/H] = [Xd1,...,dr/H2] · Ln in K0(Var/k). �

3. Rationality of the Kapranov zeta function for curves

Our goal in this section is to prove a result of Kapranov [Kap], extending the ra-
tionality of the Hasse-Weil zeta function for smooth, geometrically connected, projective
curves defined over finite fields to motivic zeta functions.

Since the Kapranov zeta function does not have coefficients in a field, there are (at
least) two possible notions of rationality that can be considered. If R is a commutative
ring and f ∈ R[[t]], we say that f is rational if there are polynomials u, v ∈ R[t], with v

invertible in R[[t]] such that f(t) = u(t)
v(t)

. We say that f is pointwise rational if for every

morphism R → K, where K is a field, the image of f in K[[t]] is rational. It is clear that
a rational formal power series is also pointwise rational. The formal power series we will
consider satisfy f(0) = 1, hence the image in every K[[t]] as above is nonzero. Of course,
when R is a field, then the two notions of rationality coincide.

Theorem 3.1. Let k be a perfect field. If X is a smooth, geometrically connected, pro-
jective curve of genus g over k, then Zmot(X, t) is a rational function. If k is finite or
algebraically closed, then

Zmot(X, t) =
f(t)

(1− t)(1− Lt)
,

for a polynomial f of degree ≤ 2g with coefficients in K̃0(Var/k).

Proof. Recall that for every d ≥ 0 we have a morphism Symd(X) → Picd(X). This can
be defined using the universal property of Picd(X), but let us describe it at the level
of k-valued points, where k is an algebraic closure of k. A k-valued point of Symd(X)
corresponds to an effective divisor D on Xk of degree d. On the other hand, a k-valued
point of Picd(X) corresponds to a line bundle on Xk of degree d, and the above map
takes D to OX(D). If d ≥ 2g − 1, then the fiber of Symd(X)k → Picd(X)k over L is

naturally isomorphic to the linear system |L| ' Pd−g
k

. In fact, there is an isomorphism

Symd(X) ' P(E), where E is a vector bundle on Picd(X) of rank d− g + 1.

Let e be the smallest positive integer such that there is a line bundle of degree e on
X. In this case we have Picd(X) ' Picd

′
(X) if d ≡ d′ (mod e). It follows from definition

and the above discussion that

Zmot(X, t) =
∑
d≥0

[Symd(X)]td =
∑

0≤d≤2g−2

[Symd(X)]td +
∑

d≥min{2g−1,0}

[Picd(X)] · [Pd−g
k ]td.

For 0 ≤ i ≤ e− 1, let di be the smallest d ≥ min{2g− 1, 0} that is congruent to i modulo
e. We have

Si :=
∑
j≥0

[Pici(X)][Pdi+je−g
k ]tdi+je = [Pici(X)]

∑
j≥0

Ldi+je−g+1 − 1

L− 1
tdi+je
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= [Pici(X)]

(
Ldi−g+1tdi

(L− 1)(1− Lete)
− tdi

(L− 1)(1− te)

)
=

[Pici(X)]

(1− te)(1− Lete)
· tdi

(
Ldi−g+1 − 1

L− 1
+ te

Le − Ldi−g

L− 1

)
.

Since the expression in parenthesis is a polynomial with coefficients in K̃0(Var/k), we see
that each Si is a rational function. We have

Zmot(X, t) =
∑

0≤d≤2g−2

[Symd(X)]td +
∑

0≤i≤e−1

Si,

hence Zmot(X, t) is a rational function.

Suppose now that k is either algebraically closed, or a finite field. In this case e = 1
(this is clear if k is algebraically closed, and it was proved in Lecture 4 when k is finite),
and we get the more precise formula in the statement of the theorem. �

4. Kapranov zeta function of complex surfaces

In this section we assume that k is an algebraically closed field, and consider the
rationality of Zmot(X, t) when dim(X) = 2, following [LL1] and [LL2].

Proposition 4.1. If X is a variety over k with dim(X) ≤ 1, then Zmot(X, t) is rational.

Proof. The assertion is clearly true when X is a point, since

Z(Spec k, t) =
∑
n≥0

tn =
1

1− t
,

and for a smooth, connected, projective curve it follows from Theorem 3.1. It is easy to
deduce the general case in the proposition by taking closures of affine curves in suitable
projective spaces, and normalizations of irreducible projective curves. Since we have al-
ready given several such arguments, we leave the details as an exercise for the reader. �

Given a variety X of dimension 2, we consider a decomposition of X = X1 t . . . t
Xr, with each Xi irreducible and quasiprojective. Since Zmot(X, t) =

∏r
i=1 Zmot(Xi, t),

we reduce studying the rationality or pointwise rationality of Zmot(X, t) to that of all
Zmot(Xi, t).

Proposition 4.2. If X and Y are birational irreducible varieties over k of dimension
two, then Zmot(X, t) is rational (pointwise rational) if and only if Zmot(Y, t) has the same
property.

Proof. By assumption, there are isomorphic open subsets U ⊆ X and V ⊆ Y . We thus
have

Zmot(X, t) = Zmot(Y, t)
Zmot(X r U, t)

Zmot(Y r V )
,

and both Zmot(X r U, t) and Zmot(Y r V, t) are rational by Proposition 4.1. Therefore
Zmot(X, t) is rational (pointwise rational) if and only if Zmot(Y, t) is. �
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If X is an arbitrary irreducible surface, there is a smooth, connected, projective
surface Y such that X is birational to Y . Indeed, resolution of singularities for surfaces
holds over fields of arbitrary characteristic.

Therefore from now on we concentrate on smooth, connected, projective surfaces.
Let X be such a surface. We start by recalling a fundamental result from classification of
surfaces. We refer to [Beau] for the case of complex surfaces, and to [Bad] for the general
case. Recall that the Kodaira dimension of X is said to be negative if H0(X,O(mKX)) = 0
for al m ≥ 1. This is a birational property of X. Given any X, there is a morphism
π : X → Y that is a composition of blow-ups of points on smooth surfaces such that Y is
minimal, that is, it admits no birational morphism Y → Z, where Z is a smooth surface.
By Castelnuovo’s criterion for contractibility, this is the case if and only if Y contains
no smooth curve C ' P1 with (C2) = −1. A fundamental result in the classification of
surfaces says that if X (hence also Y ) has negative Kodaira dimension, then Y is birational
to C ×P1, for some smooth curve C.

Proposition 4.3. If X is a smooth, connected, projective surface of negative Kodaira
dimension, then Zmot(X, t) is a rational power series.

Proof. It follows from the above discussion that X is birational to C × P1 for a smooth
curve C, hence by Proposition 4.2 it is enough to show that Zmot(C×A1, t) is rational. This
follows from Proposition 4.1, since Zmot(C×A1, t) = Zmot(C,Lt) by Proposition 2.10. �

The following theorem, the main result of [LL1], gives the converse in the case of
complex surfaces.

Theorem 4.4. If X is a smooth, connected, projective complex surface such that Zmot(X, t)
is pointwise rational, then X has negative Kodaira dimension.

We will not discuss the proof of this result, but in what follows we will sketch the
proof of the following earlier, more special result of Larsen and Lunts [LL2]. Recall that
if X is a smooth projective variety, its geometric genus is pg(X) = h0(X,ωX).

Proposition 4.5. If X is a smooth, connected, projective surface with pg(X) ≥ 2, then
Zmot(X, t) is not pointwise rational.

We start by describing the group homomorphism K0(Var/C) → K that is used in
the proof of Proposition 4.5. Let S denote the multiplicative semigroup of polynomials
h ∈ Z[t] with h(0) = 1. Since the only invertible element in S is 1, and Z[t] is a factorial
ring, every element in S can be written uniquely as hn1

1 · · ·hnr
r , where the hi are elements

in S that generate prime ideals in Z[t]. It follows that the semigroup algebra Z[S] is a
polynomial ring in infinitely many variables. In particular, it is a domain, and we take
K to be the fraction field of Z[S]. In order to avoid confusion, we denote by ϕ(h) the
element in Z[S] corresponding to h ∈ S, hence ϕ(g)ϕ(h) = ϕ(gh).

We now define a group homomorphism SB/C → S by taking 〈X〉, for X smooth,

connected, and projective, to R(X, t) := E(X, t, 0) =
∑dim(X)

i=0 (−1)ih0(X,Ωi
X)ti ∈ S. It

is an easy consequence of the Künneth theorem (see Exercise 1.14) that R(X × Y, t) =
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R(X, t) ·R(Y, t). Note that R(Pn, t) = 1 for all n ≥ 0. Indeed, using the Hodge symmetry
we have h0(Pn,Ωi

Pn) = hi(Pn,OPn) = 0 (exercise: give a direct proof using the description
of ΩPn provided by the Euler exact sequence). We deduce that R(X × Pn, t) = R(X, t).
Furthermore, if X and Y are smooth, projective birational varieties, then h0(X,Ωi

X) =
h0(Y,Ωi

Y ) for all i (see [Har, Theorem II.8.19], whose proof extends to the case i <
dim(X)). We conclude that we have a well-defined semigroup homomorphism SB/C→ S
that takes 〈X〉 to R(X, t) for every X smooth, connected, and projective. This induces a
ring homomorphism Z[SB/C]→ Z[S].

By Theorem 1.20, we have an isomorphism K0(Var/C)/(L) → Z[SB/C]. We thus
have a ring homomorphism K0(Var/C) → Z[S] ↪→ K, that we denote by µ, which
takes [X] to ϕ(R(X, t)) for every smooth, connected, projective variety X. Therefore
if X1, . . . , Xr are such varieties, then µ(

∑r
i=1 ni[Xi]) =

∑r
i=1 niϕ(E(Xi, t, 0)).

We emphasize that µ is different from the Euler-Poincaré characteristic that takes X
to E(X, t, 0), which takes values in Z[t]. We will see in Lemma 4.6 below that µ recovers
more information than this latter Euler-Poincaré characteristic.

Note that if X is a smooth, connected, n-dimensional projective variety, then the
degree of R(X, t) is ≤ n, and the coefficient of tn is (−1)npg(X). When X is an arbi-
trary irreducible variety, we will denote by pg(X) the geometric genus of every smooth,
irreducible, projective variety Y that is birational to X. As we have mentioned, this is
independent of the choice of Y .

Lemma 4.6. Suppose that Y,X1, . . . , Xr are irreducible varieties of the same dimension,
and n1, . . . , nr are integers such that µ(Y ) =

∑r
i=1 niµ(Xi). If pg(Y ) 6= 0, then there is i

such that pg(X) = pg(Yi).

Proof. It follows from Lemma 1.9 that we can find a smooth, connected, projective variety
Y ′ that is birational to Y , such that [Y ] − [Y ′] is a linear combination, with integer
coefficients, of classes of smooth, irreducible, projective varieties of dimension smaller
than n = dim(Y ). Applying this also to the Xi, we conclude that we may assume that Y
and all Xi are smooth, connected, and projective, and that we have smooth, connected,
projective varieties X ′1, . . . , X

′
s of dimension less than n, and n′1, . . . , n

′
s ∈ Z such that

µ(Y ) =
r∑
i=1

niµ(Xi) +
s∑
j=1

n′jµ(X ′j).

By assumption, µ(Y ) has degree n, while each µ(X ′j) has degree < n, hence µ(Y ) 6= µ(X ′j)
for every j. This implies that there is i such that µ(Y ) = µ(Xi), and we get, in particular,
pg(Y ) = pg(Xi). �

The key technical ingredient in the proof of Proposition 4.5 is the computation of the
geometric genera for the symmetric powers of a smooth, connected, projective complex
surface X. It is shown in [LL2] that if pg(X) = r, then

(6) pg(Symn(X)) =

(
n+ r − 1

r − 1

)
.
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Note that Symn(X) has a resolution of singularities given by the Hilbert scheme of n points
on X. This is a projective scheme X [n] that parametrizes 0-dimensional subschemes of X
of length n. It is a result of Fogarty that for a smooth, connected surface X, the Hilbert
scheme X [n] is smooth and connected. Furthermore, there is a morphism X [n] → Symn(X)
that takes a scheme Z supported at the points x1, . . . , xm to

∑m
i=1 `(OZ,xi)xi. This gives an

isomorphism onto the image on the open subset parametrizing reduced subschemes. There-
fore X [n] gives a resolution of singularities of Symn(X), hence pg(Symn(X)) = pg(X

[n]).
The above formula for pg(Symn(X)) is then deduced from results of Göttsche and Soergel
[GS] on the Hodge structure on the cohomology of X [n].

Proof of Proposition 4.5. Suppose by way of contradiction that h =
∑

n≥0 µnt
n ∈ K[[t]] is

a rational function, where µn = µ(Symn(X)). Therefore we may write

h =
a0 + a1t+ . . .+ aet

e

b0 + b1t+ . . .+ bmtm
,

for some ai, bj ∈ K, with not all bj zero. This implies that µdbm+µd+1bm−1+. . .+µd+mb0 =
0 for all d ≥ min{0, e −m + 1}. Since some bj is nonzero, by considering these relations
for d, d + 1, . . . , d + m, we conclude that D := det(µd+i+j)0≤i≤m = 0. By expanding this
determinant, we obtain a relation

(7) µ

(
m∏
i=0

Symd+2i(X)

)
=

∑
σ∈Sm+1r{1}

−sign(σ)µ

(
m∏
i=0

Symd+σ(i)+i(X)

)
,

where we consider Sm+1 to be the group of permutations of {0, 1, . . . ,m}.

Note that for every σ ∈ Sm+1, the variety
∏m

i=0 Symd+σ(i)+i(X) has dimension equal

to 2(m+ 1)(d+m), and geometric genus
∏m

i=0

(
d+σ(i)+i+r−1

r−1

)
(see formula (6)). We deduce

from (7) and Lemma 4.6 that there is a permutation σ ∈ Sm+1 different from the identity
such that

(8)
m∏
i=0

(
d+ σ(i) + i+ r − 1

r − 1

)
=

m∏
i=0

(
d+ 2i+ r − 1

r − 1

)
.

Since r ≥ 2, for every σ ∈ Sm+1 different from the identity, the following polynomial
in d

Pσ(d) =
m∏
i=0

(
d+ σ(i) + i+ r − 1

r − 1

)
−

m∏
i=0

(
d+ 2i+ r − 1

r − 1

)
is not zero, hence it does not vanish for d � 0. Indeed, if i0 is the largest i such that
σ(i) 6= i, then we can write

Pσ(d) =
m∏

i=i0+1

(
d+ 2i+ r − 1

r − 1

)
· (Q1(d)−Q2(d)),

and the linear polynomial d+2i0 +r−1 divides Q2(d), but it does not divide Q1(d). Since
we have only finitely many permutations to consider (note that m is fixed), we conclude
that by taking d� 0, we obtain a contradiction. �
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Remark 4.7. The Euler-Poincaré characteristic constructed above, that makes Zmot(X, t)
not pointwise rational, vanishes on L. It would be interesting to find such an Euler-
Poincaré characteristic that is nonzero on L (hence factors through K0(Var/C)[L−1]).

Remark 4.8. It is interesting to compare Theorem 4.4 on the rationality of Zmot(X, t)
with Mumford’s theorem on the finiteness of the Chow group A2(X)0 of rational equiva-
lence classes of 0-cycles on X of degree zero. It is shown in [Mum] that if X is a smooth,
connected, projective complex surface with pg(X) 6= 0, then A2(X)0 is infinitely dimen-
sional in a suitable sense (in particular, it can not be parametrized by the points of an
algebraic variety). This can also be interpreted as a statement about the growth of the
symmetric products Symn(X), when n goes to infinity. On the other hand, it was con-
jectured by Bloch that the converse is also true, namely that if pg(X) = 0, then A2(X)0
is finite-dimensional. While this is still a conjecture, it is known to hold for surfaces of
Kodaira dimension ≤ 1. In particular, we see that for any surface X of Kodaira dimension
0 or 1 with pg(X) = 0, we have A0(X)0 finite dimensional, but Zmot(X, t) is not rational.

References

[AKMW] D. Abramovich, K. Karu, K. Matsuki, and J. W lodarczyk, Torification and factorization of
birational maps, J. Amer. Math. Soc. 15 (2002), 531–572. 5
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