
LECTURE 9. DWORK’S PROOF OF RATIONALITY OF ZETA
FUNCTIONS

In this lecture we present Dwork’s proof [Dwo] for the first of the Weil conjectures,
asserting the rationality of the Hasse-Weil zeta function for a variety over a finite field.
We follow, with small modifications, the presentation in [Kob]. We freely make use of the
basic facts about p-adic fields as covered in Appendix 2.

1. A formula for the number of Fq-points on a hypersurface

Recall that our goal is to prove the rationality of the zeta function of an algebraic
variety X over Fq. As we have seen in Lecture 3, in order to prove this in general, it is
enough to prove it in the case when X is a hypersurface in Ad

Fq
, defined by some f ∈

Fq[x1, . . . , xd]. Furthermore, an easy argument based an induction and on the inclusion-
exclusion principle, will allow us to reduce ourselves to proving the rationality of

Z̃(X, t) := exp

(∑
n≥0

N ′n
n
tn

)
,

where

N ′n = |{u = (u1, . . . , ud) ∈ Fd
qn | f(u) = 0, ui 6= 0 for all i}|.

Hence from now on we will focus on Z̃(X, t).

The starting point consists in a formula for N ′n in terms of an additive character of
Fqn . By this we mean a group homomorphism χ : Fqn → Qp. We say that such a character
is trivial if χ(u) = 1 for every u ∈ Fq. The main example that we will need is the following,

Lemma 1.1. If ε ∈ Qp is a primitive root of 1, then χ : Fqn → Qp(ε) given by χ(u) =

ε
TrFqn/Fp (u) is a nontrivial additive character of Fqn.

Proof. It is clear that ψ : Fp → Qp(ε) given by ψ(mmod p) = εm is an injective homomor-
phism. Since TrFqn/Fq is additive, we deduce that χ is an additive character. If χ is trivial,
then TrFqn/Fp(u) = 0 for every u ∈ Fq. This contradicts the fact that the bilinear pairing
(u, v)→ TrFqn/Fp(u, v) is nondegenerate (recall that Fqn is separable over Fp). �

Remark 1.2. Since Fqn/Fp is Galois, with Galois group cyclic and generated by the
Frobenius morphism, it follows that for every a ∈ Fqn , we have TrFqn/Fp(a) = a + ap +

. . .+ ap
ne−1

, where q = pe.

Lemma 1.3. If χ is a nontrivial additive character of Fqn, then
∑

u∈Fqn χ(u) = 0.
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Proof. Let v ∈ Fqn be such that χ(v) 6= 1. We have∑
u∈Fqn

χ(u) =
∑
u∈Fqn

χ(u+ v) = χ(v) ·
∑
u∈Fqn

χ(u),

which implies the assertion in the lemma since χ(v) 6= 1. �

Suppose now that f ∈ Fq[x1, . . . , xn] is as above, and ψn is a nontrivial additive char-
acter of Fqn . It follows from Lemma 1.3 that for every a ∈ Fqn , we have

∑
v∈Fqn ψn(va) = 0,

unless a = 0, in which case the sum is clearly equal to qn. Therefore we have∑
u∈(F∗qn )d

∑
v∈Fqn

ψn(vf(u)) = N ′nq
n.

Since the sum of the terms corresponding to v = 0 is (qn − 1)d, we conclude that

(1)
∑

u∈(F∗qn )d

∑
v∈F∗qn

ψn(vf(u)) = N ′nq
n − (qn − 1)d.

The main result of this section will be a formula for the left-hand side of (1) by
applying a suitable analytic function to the Teichmüller lifts of u1, . . . , un, v. Furthermore,
the analytic functions corresponding to the various n will turn out to be related in a
convenient way. Let us fix a primitive root ε of 1 of order p in Qp. For every a ∈ Fpm ,

we denote by ã ∈ Z
(m)
p the Teichmüller lift of a (see Appendix, §2). The key ingredient is

provided by a formal power series Θ ∈ Qp(ε)[[t]], that satisfies the following two properties:

P1) The radius of convergence of Θ is > 1.
P2) For every n ≥ 1 and every a ∈ Fqn , we have

(2) ε
TrFqn/Fp (a) = Θ(ã)Θ(ãq) · · ·Θ(ãq

n−1

).

Note that by Lemma 1.1, the left-hand side of (2) is a nontrivial character of Fqn . Fur-

thermore, note that if a ∈ Fqn , then |ã|p = 1, hence Θ(ãq
i
) is well-defined by P1).

Let us assume for the moment the existence of such Θ, and let us see how we can
rewrite the left-hand side of (1). Suppose that f =

∑
m∈Zd≥0

cmx
m ∈ Fq[x1, . . . , xd], where

for m = (m1, . . . ,md) we put xm = xm1
1 · · · x

md
d . Note that only finitely many of the cm

are nonzero. It is clear that for u = (u1, . . . , ud) ∈ (F∗qn)d and v ∈ F∗qn , we have

(3) ψn(vf(u)) =
∏

m∈Zd≥0

ψn(cm vu
m1
1 · · ·u

md
d ).

We take ψn(a) = ε
TrFqn/Fp (a), and let

(4) G(y, x) =
∏

m∈Zd≥0

Θ(c̃m yx
m) ∈ Qp[[x1, . . . , xd, y]].
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hence (2) and (3) imply

(5)
∑

u∈(F∗qn )d

∑
v∈F∗qn

ψn(vf(u)) =
∑

v,u1,...,ud∈F∗qn

(
n−1∏
i=0

G(ṽq
i

, ũ1
qi , . . . , ũd

qi)

)
.

We will use this formula in §3 to prove that Z̃(X, t) can be written as the quotient of two
formal power series in Cp[[t]], both having infinite radius of convergence.

2. The construction of Θ

We now explain how to construct the formal power series Θ whose existence was
assumed in the previous section. Note first that it is enough to do the construction when
q = p: indeed, if Θ1 ∈ Qp(ε)[[t]] satisfies P1) and P2) for q = p, and for q = pe we take

Θ(t) = Θ1(t)Θ1(t
p) · · ·Θ1(t

pe−1
), then Θ satisfies P1) and P2) for q. Indeed, if R > 1 is the

radius of convergence of Θ1, then the radius of convergence of Θ is at least R1/pe−1
> 1.

Furthermore,

ε
TrFpne/Fp (a) =

ne−1∏
i=0

Θ1(ã
pi) =

e−1∏
j=0

Θ(ãq
j

).

Therefore, in the rest of this section we assume q = p.

We begin by considering the formal power series in two variables given by the fol-
lowing infinite product

F (x, y) = (1 + y)x(1 + yp)
xp−x
p · · · (1 + yp

n

)
xp
n
−xp

n−1

pn · · · ∈ Q[[x, y]].

Note that if 1 + hi is the ith factor in the above product, then hi ∈ (yp
i−1

), hence the
above product gives, indeed, a formal power series1.

Proposition 2.1. We have F (x, y) ∈ Zp[[x, y]]2.

The following lemma gives a general criterion for proving an assertion as in the
proposition.

Lemma 2.2. If f ∈ Qp[[x, y]] is such that f(0, 0) = 1, then f ∈ Zp[[x, y]] if and only if

(6)
f(xp, yp)

f(x, y)p
∈ 1 + p(x, y)Zp[[x, y]].

Proof. Suppose first that f ∈ Zp[[x, y]]. Since f(0, 0) = 1, it follows that f is invertible

and 1
f
∈ 1 + (x, y)Zp[[x, y]]. We deduce that 1

fp
, hence also f(xp,yp)

f(x,y)p
lies in 1 + (x, y)Zp[[x, y]].

If f ∈ Fp[[x, y]] is the reduction of f mod pZp[[x, y]], we clearly have f(xp, yp) = f(x, y)p.

This implies that f(xp,yp)
f(x,y)p

lies in 1 + p(x, y)Zp[[x, y]], as required.

1The general assertion is that if hi ∈ (x, y)Ni are such that limi→∞ Ni = ∞, then
∏

i(1 + hi) is a
formal power series, as the coefficient of each monomial xmyn comes from only finitely many factors in
the product.

2Of course, since F has coefficients in Q, this is equivalent to saying that F has coefficients in Z(pZ).



4 LECTURE 9. DWORK’S PROOF OF RATIONALITY OF ZETA FUNCTIONS

Conversely, suppose that (6) holds, and let us write f =
∑

i,j≥0 ai,jx
iyj, with ai,j ∈

Qp and a0,0 = 1. By hypothesis, we may write

(7)
∑
i,j≥0

ai,jx
piypj =

(∑
i,j≥0

ai,jx
iyj

)p

·
∑
i,j≥0

bi,jx
iyj,

where b0,0 = 1, and all other bi,j lie in pZp. Arguing by induction, we see that it is enough
to show the following: if α, β ∈ Z≥0, not both zero, are such that ak,` ∈ Zp for all (k, `) with
k ≤ α and ` ≤ β such that one of the inequalities is strict, then aα,β ∈ Zp. Let us consider
the coefficient cα,β of xαyβ in the power series in (7). By considering the left-hand side of
(7), we see that cα,β = 0 unless p divides both α and β, in which case it is equal to aα/p,β/p.
By considering the right-hand side of (7), we see that cα,β = paα,β +Q1 + . . .+Qr, where
each Qj is a product of the form Nbk,`ak1,`1 · · · aks,`s , for some multinomial coefficient
N ∈ Z, and with all (ki, `i) having the property that ki ≤ α and `i ≤ β, with one of
the inequalities being strict. It follows that every Qj lies in Zp, and if Qj is not in pZp,
then k = ` = 0, and cα,βx

αyβ = (ak,`x
ky`)p for some k and `. This can happen only when

both α and β are divisible by p, and in this case Qj is equal to apα/p,β/p. Furthermore,

since in this case we have apα/p,β/p ≡ aα/p,β/p (mod p), we deduce that aα,β ∈ Zp, and this

completes the proof of the proposition. �

Remark 2.3. It should be clear from the proof of the lemma that a similar statement
holds for formal power series in any number of variables. We restricted to the case of
two variables, which is the one we will need, in order to avoid complicating too much the
notation.

Proof of Proposition 2.1. Since we clearly have F (0, 0) = 1, we may apply Lemma 2.2, so

it is enough to show that F (xp,yp)
F (x,y)p

lies in 1 + p(x, y)Zp. By definition, we have

F (xp, yp)

F (x, y)p
=

(1 + yp)x
p · (1 + yp

2
)
xp

2
−xp
p · (1 + yp

3
)
xp

3
−xp

2

p2 · · ·

(1 + y)px · (1 + yp)xp−x · (1 + yp2)
xp

2−xp
p · · ·

=
(1 + yp)x

(1 + y)px
=

(
(1 + yp)

(1 + y)p

)x
.

In order to see that this lies in 1 + p(x, y)Zp[[x, y]], we apply Lemma 2.2 in the other

direction: since g = 1 +y ∈ Zp[[y]], and g(0) = 1, we deduce that 1+yp

(1+y)p
= 1 +pw, for some

w ∈ yZp[[y]]. It follows from definition that

(1 + pw)x = 1 +
∑
m≥1

x(x− 1) . . . (x−m+ 1)

m!
pmwm,

and pm

m!
∈ pZp for every m ≥ 1. Indeed, we have

ordp(m!) =
∑
i≥1

bm/pic < m

p

∑
i≥0

1

pi
=

m

p− 1
≤ m.

We conclude that
(

(1+yp)
(1+y)p

)x
∈ 1 + p(x, y)Zp[[x, y]], which completes the proof. �

Recall that ε ∈ Qp is our fixed primitive root of order p of 1. Let λ = ε − 1. The
following estimate for |λ|p is well-known, but we include a proof for completeness.
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Lemma 2.4. With the above notation, we have |λ|p =
(

1
p

)1/(p−1)
.

Proof. Since (1 + λ)p = 1, it follows that λ is a root of the polynomial h(x) = xp−1 +∑p−1
i=1

(
p
i

)
xp−1−i. Since all coefficients of f but the leading one are divisible by p, and h(0)

is not divisible by p2, it follows from Eisenstein’s criterion that h ∈ Qp[x] is an irreducible
polynomial. This shows that Qp(ε) = Qp(λ) has degree (p− 1) over Qp.

Every σ : Qp(ε) → Qp must satisfy σ(ε) = εi for some 1 ≤ i ≤ p − 1, and σ is
uniquely determined by i. This shows that Qp(ε) is a Galois extension of Qp, and since
[Qp(ε) : Qp] = n − 1, we conclude that the Galois conjugates of ε are precisely the εi,
with 1 ≤ i ≤ p− 1. In particular, we have |1− ε|p = |1− εi|p for every 1 ≤ i ≤ p. On the
other hand, we have

1 + x+ . . .+ xp−1 =

p−1∏
i=1

(x− εi),

hence
∏p−1

i=1 (1− εi) = p. We thus deduce

|ε− 1|p = |p|1/(p−1)p =

(
1

p

)1/(p−1)

.

�

We put Θ(t) = F (t, λ). We first show that this is well-defined and has radius of
convergence > 1.

Lemma 2.5. We have Θ ∈ Qp(ε)[[t]], and its radius of convergence is at least p1/(p−1) > 1.

Proof. Let us write F (x, y) =
∑

m≥0
(∑

n≥0 am,ny
n
)
xm. By Proposition 2.1, we have

am,n ∈ Zp for every m and n. We claim that am,n = 0 whenever m > n. Indeed, note that
in

(1 + y)x =
∑
n≥0

x(x− 1) . . . (x− n+ 1)

n!
yn,

every monomial xiyj that appears with nonzero coefficient, has i ≤ j. The same then

holds for each (1 + yp
i
)
xp
i
−xp

i−1

pi , for i ≥ 1. Since this property holds for each of the factors
in the definition of F (x, y), it also holds for F , as claimed.

Since |am,n|p ≤ 1 for every m and n, each series
∑

n≥0 am,ny
n has radius of conver-

gence at least 1 > |λ|p, hence F (t, λ) is a well-defined series in Qp(ε)[[t]]. Furthermore, for
every m we have

|
∑
n≥0

am,nλ
n|p = |

∑
n≥m

am,nλ
n|p ≤ |λ|mp .

This implies that the radius of convergence of F (t, λ) is at least |λ|−1p = p1/(p−1) > 1. �

We now show that Θ also satisfies the property P2) from §1 and thus complete the
proof of the existence of Θ with the required properties.
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Lemma 2.6. For every n ≥ 1, and every a ∈ Fpn, we have

ε
TrFpn/Fp (a) = Θ(ã)Θ(ãp) · · ·Θ(ãp

n−1

).

Proof. Note first that since Θ has radius of convergence larger than 1, and |ãpi |p is either

1 or 0, we may apply Θ to the ãp
i
. Let us compute, more generally,

n−1∏
i=0

F (ãp
i

, y) =
n−1∏
i=0

(1 + y)ã
pi ·
∏
m≥1

(1 + yp
m

)
∑n−1
i≥0

ãp
m+i

−ãp
m+i−1

pm

= (1 + y)ã+ã
p+...+ãp

n−1

·
∏
m≥1

(1 + yp
m

)
ãp
m+n−1−ãp

m−1

pm = (1 + y)ã+ã
p+...+ãp

n−1

,

where the last equality follows from the fact that ãp
n

= ã. Since λ = ε − 1, in order to
complete the proof of the lemma it is enough to show that

(8) εã+ã
p+...+ãp

n−1

= ε
TrFpn/Fp (a).

Recall that Fpn is a Galois extension of Fp with Galois group isomorphic to Z/nZ, and
generated by σ, where σ(u) = up. By Theorem 2.1 in Appendix 2, we have an isomorphism

G(Q
(n)
p /Qp) ' G(Fpn/Fp), and let σ̃ be the automorphism of Q

(n)
p corresponding to σ.

Since σ̃(ã)p
n

= σ̃(ã), it follows that σ̃(ã) is the Teichmüller lift of its residue class, which

is σ(a) = ap. Therefore σ̃(ã) = ãp. We conclude that
∑n−1

i=0 ã
pi ∈ Zp, and it clearly lies

over
∑n−1

i=0 a
pi = TrFpn/Fp(a). Therefore in order to show (8), we see that it suffices to

show that if w ∈ Zp lies over b ∈ Fp, then εw = εb, where the left-hand side is defined
as (1 + λ)w. We may write w = pw0 + ` for some ` ∈ Z, and using Proposition 5.3 in
Appendix 2, we obtain

(1 + λ)w = ((1 + λ)p)w0 · (1 + λ)` = 1 · ε` = εb.

This completes the proof of the lemma. �

3. Traces of certain linear maps on rings of formal power series

Our goal in this section is to establish the following intermediary step towards the
proof of the rationality of the zeta function.

Proposition 3.1. With the notation introduced in §1, for every X = V (f), where f ∈
Fq[x1, . . . , xn], the formal power series Z̃(X, t) can be written as a quotient g(t)

h(t)
, where

g, h ∈ Cp[[t]] have infinite radii of convergence.

The proof of the proposition will rely on the formula for the numbers N ′n coming
out of (1) and (5) in §1, and on a formalism for treating certain linear maps on a formal
power series ring, that we develop in this section.

For N ≥ 1, we consider the formal power series ring R = Cp[[x1, . . . , xN ]], and we
denote by m the maximal ideal in R. We will apply this with N = d + 1, where d is as
in the previous sections. As usual, for α = (α1, . . . , αN) ∈ ZN≥0, we put xα = xα1

1 · · ·x
αN
N
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and |α| =
∑N

i=1 αi. The order ord(h) of h ∈ R is the largest r ≥ 0 such that h ∈ mr (we
make the convention that ord(0) = ∞). On R we consider the m-adic topology. Recall
that this is invariant under translations, and a basis of open neighborhoods of the origin
is given by {mr | r ≥ 0}. Therefore we have hm → h when m goes to infinity if and only if
limm→∞ ord(fm− f) =∞. As in the case of a DVR, one shows that one can put a metric
on R that induces the m-adic topology.

We will consider Cp-linear maps A : R→ R that are continuous with respect to the
m-adic topology. Such a map is determined by its values on the monomials in R. More
precisely, such a map must satisfy

(9) limA(xα) = 0 when |α| → ∞,
and for f =

∑
α cαx

α, we have A(f) =
∑

α cαA(xα). Conversely, given a set of elements
(A(xα))α∈ZN≥0

that satisfies (9), we obtain a continuous linear map A given by the above

formula. If we write A(xβ) =
∑

α aαβx
α, with aαβ ∈ Cp, then we can represent A by the

“matrix” (aαβ)α,β∈ZN≥0
. Note that condition (9) translates as follows: for every α, we have

aαβ = 0 for |β| � 0.

We say that A has finite support if the corresponding “matrix” (aαβ) has only finitely
many nonzero entries. In this case A can be identified to an endomorphism of a finite-
dimensional subspace of Cp[x1, . . . , xN ] ⊆ Cp[[x1, . . . , xn]], and (aαβ) can be identified to
the corresponding matrix.

The usual rules for dealing with matrices apply in this setting. If A is described by
the “matrix” (aαβ), then

A(
∑
β

cβx
β) =

∑
α

(∑
β

aαβcβ

)
xα

(note that by hypothesis, the sum
∑

β aαβcβ has only finitely many nonzero terms). If A

and B are linear, continuous maps as above, described by the “matrices” (aαβ) and (bαβ),
then the composition A ◦ B is again linear and continuous, and it is represented by the
product (cαβ) of the two “matrices”: cαβ =

∑
γ aαγbγβ.

We now introduce the two main examples of such maps that we will consider. Given
H ∈ R, we define ΨH : R → R to be given by multiplication by H: ΨH(f) = fH. This
is clearly Cp-linear and continuous. If H =

∑
α hαx

α, then ΨH is represented by the
“matrix” (hα−β)α,β, where we put hα−β = 0 if α−β 6∈ ZN≥0. Note that ΨH1 ◦ΨH2 = ΨH1H2 .

For another example, if q is any positive integer, let Tq : R → R be given by
Tq(
∑

α∈ZN≥0
aαx

α) =
∑

α∈ZN≥0
aqαx

α. It is clear that Tq is Cp-linear and continuous. If

H =
∑

α hαx
α ∈ R, let Ψq,H = Tq ◦ΨH . We have

Ψq,H(xβ) = Tq(
∑
α

hαx
α+β) = Tq(

∑
α

hα−βx
α) =

∑
α

hqα−βx
β.

Therefore Ψq,H is represented by the “matrix” (hqα−β)α,β.

Lemma 3.2. We have ΨH ◦ Tq = Ψq,Hq , where Hq(x1, . . . , xN) = H(xq1, . . . , x
q
N).
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Proof. Let H =
∑

α∈Zd≥0
hαx

α, and we put hα = 0 if α 6∈ ZN≥0. We have

(10) ΨH ◦ Tq(
∑
β

bβx
β) = H ·

∑
β

bqβx
β =

∑
γ

( ∑
α+β=γ

hαbqβ

)
xγ.

On the other hand,

(11) Tq ◦Hq

(∑
β

bβx
β

)
= Tq

(∑
γ

( ∑
qα+β=γ

hαbβ

)
xγ

)
=
∑
γ

( ∑
qα+β=qγ

hαbβ

)
xγ

In the last sum in (11) we see that β has to be divisible by q, and we deduce that the two
expressions in (10) and (11) are equal. �

We now discuss the trace of a continuous linear map as above. Given such a map
A : R→ R described by the “matrix” (aαβ), we consider the series

∑
α∈ZN≥0

aαα. If this is

convergent in Cp, we denote its sum by Trace(A). Note that if A has finite support, then
Trace(A) is equal to the trace of any corresponding endomorphism of a finite-dimensional
vector space of polynomials.

Let R0 be the set of those H =
∑

α hαx
α ∈ R with the property that there is M > 0

such that |hα|p ≤
(

1
p

)M |α|
for every α ∈ ZN≥0.

Remark 3.3. If H ∈ R0, then there is ρ > 1 such that H(u1, . . . , uN) is convergent
whenever ui ∈ Cp are such that |ui| ≤ ρ for all i. Indeed, with M as above, if ρ = pa,
where 0 < a < M , then

|hαuα1
1 . . . uαNN |p ≤ |hα|p · ρ

|α| ≤
(

1

p

)(M−a)|α|

,

which converges to zero when |α| goes to infinity.

Lemma 3.4. R0 is a subring of R. Furthermore, if j1, . . . , jN are positive integers, and
if H ∈ R0, then H(xj11 , . . . , x

jN
N ) ∈ R0.

Proof. The first assertion follows from the fact that if M > 0 works for both H1 and H2,
then it also works for H1−H2 and H1H2. The second assertion follows from the fact that
if M works for H, and if j = max{j1, . . . , jN}, then M/j works for H(xj11 , . . . , x

jN
N ). �

Proposition 3.5. Let H ∈ R0 and Ψ = Ψq,H for some integer q ≥ 2. For every s ≥ 1
the trace of Ψs is well-defined, and

(qs − 1)NTrace(Ψs) =
∑
u

H(u)H(uq) . . . H(uq
s−1

),

where the sum is over all u = (u1, . . . , uN) ∈ CN
p such that uq

s−1
i = 1 for all i.

Proof. Let us first consider the case s = 1. Recall that ifH =
∑

α hαx
α, then Ψ is described

by the matrix (hqα−β)α,β. Therefore Trace(Ψ) =
∑

α∈ZN≥0
h(q−1)α. By assumption, there is

M > 0 such that |hα|p ≤
(

1
p

)M |α|
for every α. In particular, lim|α|→∞ h(q−1)α = 0.
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Furthermore, we have seen in Remark 3.3 that H(u1, . . . , uN) is well-defined when
|ui| ≤ 1 for all i. The subset U = {λ ∈ Cp | λq−1 = 1} is a cyclic subgroup of Cp. If
λ0 ∈ U is a generator, then∑

λ∈U

λi =

q−2∑
j=0

λij0 =

{
q − 1, if (q − 1)|i;

0, otherwise.

Therefore ∑
u∈UN

H(u) =
∑
u∈UN

∑
α∈ZN≥0

hαu
α =

∑
α∈ZN≥0

hα ·
N∏
i=1

(∑
ui∈U

uαii

)

= (q − 1)N
∑

α∈(q−1)ZN≥0

hα = (q − 1)NTrace(Ψ).

This completes the proof when s = 1. Suppose now that s ≥ 2. Using repeatedly
Lemma 3.2, we obtain

Ψs = (Tq ◦ΨH)s = (T 2
q ◦ΨHq ◦ΨH) ◦ (Tq ◦ΨH)s−2 = (T 2

q ◦ΨHqH) ◦ (Tq ◦ΨH)s−2 = . . .

= T sq ◦ΨHqs−1 ...HqH = Ψqs,Hqs−1 ...HqH .

It follows from Lemma 3.4 that since H lies in R0, we also have Hqs−1 . . . HqH ∈ R0.
Therefore we may apply the case s = 1 to deduce that Trace(Ψs) is well-defined, and that

(qs − 1)NTrace(Ψs) =
∑
u∈UN

H(u)H(uq) . . . H(uq
s−1

).

�

Suppose now that A : R → R is a Cp-linear continuous map, described by the
“matrix” (aαβ)α,β. We define the characteristic power series of A by

(12) det(Id− tA) :=
∑
m≥0

(−1)m

(∑
σ

ε(σ)aα1σ(α1) · · · aαmσ(αm)

)
tm,

where the second sum is over all subsets with m elements {α1, . . . , αm} of ZN≥0, and over
all permutations σ of such a set. Of course, the definition makes sense if the series that
appears as the coefficient of tm is convergent in Cp for everym. It is clear that if A has finite
support, then det(Id − tA) is equal to the characteristic polynomial of a corresponding
endomorphism of a finite-dimensional vector space of polynomials.

Lemma 3.6. If H ∈ R0, then for every integer q ≥ 2 the characteristic power series of
Ψ = Ψq,H is well-defined, and it has infinite radius of convergence.

Proof. Let us write H =
∑

α hαx
α, and let M > 0 be such that |hα|p ≤

(
1
p

)M |α|
for every

α. We have seen that Ψ is described by the “matrix” (aαβ), where aαβ = hqα−β. Given
{u1, . . . , um} ⊆ ZN≥0, and a permutation σ of this set, we have

|aα1σ(α1) · · · aαmσ(αm)|p ≤
(

1

p

)M∑m
i=1 |qαi−σ(αi)|

.
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Note that |qαi − σ(αi)| = q|αi| − |σ(αi)| if qαi − σ(αi) is in ZN≥0, and |qαi − σ(αi)| = 0,
otherwise. Furthermore, in the latter case we also have aαiσ(αi) = 0. We thus conclude
that

|aα1σ(α1) · · · aαmσ(αm)|p ≤
(

1

p

)M(q−1)(|α1|+...+|αm|)

.

Since the right-hand side tends to zero when max{|αi|} goes to infinity, it follows that
det(Id− tA) is well-defined.

Furthermore, the above computation shows that if we write det(Id−tA) =
∑

m≥0 bmt
m,

then

|bm|1/mp ≤ max
α1,...,αm

(
1

p

)M(q−1)(|α1|+...+|αm|)
m

,

where the maximum is over distinct α1, . . . , αm ∈ ZN≥0. When m goes to infinity, we have

min
α1,...,αm

M(q − 1)(|α1|+ . . .+ |αm|)
m

→∞.

The above estimate therefore implies that limm→∞ |bm|1/mp = 0, hence det(Id − tA) has
infinite radius of convergence. �

Proposition 3.7. If A : R → R is a continuous Cp-linear map such that det(Id − tA)
and Trace(As) are well-defined for all s ≥ 1, then

det(Id− tA) = exp

(
−
∑
s≥1

Trace(As)

s
ts

)
.

Proof. If A has finite support, then the assertion follows from Lemma 2.2 in Lecture 5.
Our goal is to use this special case to deduce the general one.

Let us consider a sequence (A(m))m≥1 of maps with finite support, each described

by the matrix (a
(m)
αβ )α,β∈ZN≥0

, that satisfies the following condition. For every α and β, we

have a
(m)
αβ = aαβ or a

(m)
αβ = 0, and the former condition holds for all m� 0. It is clear that

we can find a sequence (A(m))m≥1 with this property.

It is convenient to consider on Cp[[t]] (identified to a countable product of copies
of Cp) the product topology, where each Cp has the usual p-adic topology. Explicitly, a
sequence of formal power series (fm)m≥1, with fm =

∑
i≥0 bm,it

i, converges to f =
∑

i≥0 bit
i

if and only if limm→∞ bm,i = bi for every i. Note that if this is the case, and all fm(0)
are zero, then exp(fm) converges to exp(f) when m goes to infinity (this is the case if we
replace exp by any other element of Cp[[t]]). Since each A(m) satisfies the conclusion of the
proposition, in order to complete the proof it is enough to show that

i) limm→∞ det(Id− tA(m)) = det(Id− tA).
ii) limm→∞Trace((A(m))s) = Trace(As) for every s ≥ 1.
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Let us first check i). We consider the coefficients b
(m)
` and b` of t` in det(Id− tA(m))

and det(Id− tA), respectively. By definition, we have

(13) b
(m)
` = (−1)`

∑
σ

ε(σ)a
(m)
α1σ(α1)

· · · a(m)
α`σ(α`)

.

By our choice of A(m), every product in the sum above is either zero, or it shows up in the
corresponding expression for b`. Furthermore, given any {α1, . . . , α`} and any permutation
σ of this set, the product ε(σ)aα1σ(α1) · · · aα`σ(α`) appears in (13) for m� 0. Since we know
that det(Id− tA) exists, the assertion in i) follows.

The proof of ii) is similar. By definition, we have

(14) Trace((A(m))s) =
∑

α1,...,αs

a(m)
α1α2
· · · a(m)

αs−1αs
a(m)
αsα1

.

By hypothesis, each product a
(m)
α1α2 · · · a

(m)
αsα1 is either zero, or it is equal to aα1α2 · · · aαsαs .

Moreover, by hypothesis every product aα1α2 · · · aαsαs+1 appears in (14) if m � 0. Since
Trace(As) exists, we deduce the assertion in ii). This completes the proof of the proposi-
tion. �

By Lemmas 3.5 and 3.6, we may apply the above proposition, to get the following

Corollary 3.8. If H ∈ R0 and Ψ = Ψq,H for an integer q ≥ 2, then

det(Id− tΨ) = exp

(
−
∑
s≥1

Trace(Ψs)

s
ts

)
.

We now apply the above framework to give a proof of Proposition 3.1. Given f ∈
Fq[x1, . . . , xd], we let N = d+ 1. We begin with the following lemma.

Lemma 3.9. For every n ≥ 1, the formal power series G ∈ R = Cp[[y, x1, . . . , xd]] defined
in (4) lies in R0.

Proof. Since G is a product of factors of the form Θ(c̃yxm1
1 · · ·x

md
d ), it follows from

Lemma 3.4 that it is enough to see that Θ(ayxm1
1 · · · y

md
d ) lies in R0 whenever |a|p = 1

and m1, . . . ,md ∈ Z≥0. Furthermore, if q = pe, then we have taken Θ(t) =
∏e−1

i=0 Θ0(t
pi),

where Θ0 is constructed for q = p. A second application of Lemma 3.4 allows us to reduce
to the case when q = p.

Recall that we have seen in the proof of Lemma 2.5 that if Θ =
∑

i≥0 bit
i, then

|bi|p ≤ |λ|ip =
(

1
p

)i/(p−1)
. If a and m1, . . . ,md are as above, then

Θ(ayxm1
1 · · ·x

md
d ) =

∑
i

bia
iyixim1

1 · ximdd .

Note that

|biai|p = |bi|p ≤
(

1

p

)i/(p−1)
=

(
1

p

)M |(i,im1,...,imd)|

,

where M = 1
(p−1)(1+m1+...+md)

. Therefore Θ(ayxm1
1 · · ·x

md
d ) lies in R0. �
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We can now prove the result stated at the beginning of this section.

Proof of Proposition 3.1. Since G ∈ R0, we may apply Proposition 3.5 in order to compute
Trace(Ψq,G). Note that {w ∈ Cp | wq

n−1 = 1} = {ũ | u ∈ F∗qn}. We deduce using (1) and
(5) that

(15) N ′nq
n−(qn−1)d =

∑
v,u1,...,ud∈F∗qn

(
n−1∏
i=0

G(ṽq
i

, ũ1
qi , . . . , ũd

qi)

)
= (qn−1)d+1Trace(Ψn

q,G).

Let us compute

(16) exp

(∑
n≥1

N ′nq
n − (qn − 1)d

n
tn

)
= Z̃(X, qt) · exp

(
−

d∑
i=0

(−1)d−i
(
d

i

)
qni

n
tn

)

= Z̃(X, qt) ·
d∏
i=0

exp

(
(−1)d−i

(
d

i

)
log(1− qit)

)
= Z̃(X, qt) ·

d∏
i=0

(1− qit)(−1)d−i(
d
i).

On the other hand, using Corollary 3.8 and Lemma 3.9 we get
(17)

exp

(∑
n≥1

(qn − 1)d+1Trace(Ψn
q,G)

tn

n

)
= exp

(
d+1∑
i=0

(−1)d+1−i
(
d+ 1

i

)
Trace(Ψn

q,G)
qnitn

n

)

=
d+1∏
i=0

det(Id− qitΨq,G)(−1)
d−i(d+1

i ).

It follows from Lemma 3.6 that each det(Id− qitΨq,G) has infinite radius of convergence.

Since the expressions in (16) and (17) are equal, we conclude that Z̃(X, qt) is the quotient

of two formal power series in Cp[[t]] with infinite radius of convergence, hence Z̃(X, t) has
the same property. �

4. The rationality of the zeta function

The last ingredient in Dwork’s proof for the rationality of the zeta function is
the following proposition. In order to avoid confusion, we denote by |m|∞ the usual
(Archimedean) absolute value of an integer m.

Proposition 4.1. Let Z(t) =
∑

n≥0 ant
n be a formal power series in Z[[t]], that satisfies

the following two properties:

1) There are C, s > 0 such that |an|∞ ≤ Csn for all n ≥ 0.

2) The image of Z in Cp[[t]] can be written as a quotient g(t)
h(t)

, where g, h ∈ Cp[[t]] have

infinite radii of convergence.

Then Z(t) lies in Q(t).
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We first need a lemma that gives a sharper version of the rationality criterion in
Proposition 2.3 in Lecture 5. We will consider a formal power series f =

∑
n≥0 ant

n with
coefficients in a fieldK. For every i, N ≥ 0, we consider the matrixAi,N = (ai+α+β)0≤α,β≤N .

Lemma 4.2. With the above notation, the power series f is rational if and only if there
is N such that det(Ai,N) = 0 for all i� 0.

Proof. We have f ∈ K(t) if and only if there is a nonzero polynomial Q(t) such that Qf
is a polynomial. If we write Q = b0 + b1t+ . . .+ bN t

N , then the condition we need is that

(18) bNai + bN−1ai+1 + . . .+ b0aN = 0

for all i� 0. The existence of b0, . . . , bN , not all zero, that satisfy these conditions clearly
implies that det(Ai,N) = 0 for i� 0.

Conversely, suppose that we have N such that det(Ai,N) = 0 for i � 0 (say, for
i ≥ i0), and that N is minimal with this property. For every i, we put

Li = (ai, . . . , ai+N) ∈ KN+1 and L′i = (ai, . . . , ai+N−1) ∈ KN .

Claim. We have det(Ai,N−1) 6= 0 for every i ≥ i0. If this is the case, since det(Ai,N) = 0,

it follows that for every i ≥ i0 + N , we have Li ∈
∑N

j=1 Li−j, so that
∑

i≥i0 K · Li is
spanned by Li0 , . . . , Li0+N−1. In this case, it is clear that we can find b0, . . . , bN not all
zero such that (18) holds for all i ≥ i0. Therefore, in order to complete the proof it is
enough to show the claim.

By the minimality assumption in the definition of N , it is enough to show that if
i ≥ i0 and det(Ai,N−1) = 0, then det(Ai+1,N−1) = 0. Since det(Ai,N−1) = 0, we have
L′i, . . . , L

′
i+N−1 linearly dependent. We have two cases to consider. If L′i+1, . . . , L

′
i+N−1 are

linearly dependent, then it is clear that det(Ai+1,N−1) = 0. On the other hand, if this

is not the case, then we can write L′i =
∑N−1

j=1 cjL
′
i+j. Let us replace in the first row of

Ai,N each ai+` by ai+`−
∑N−1

j=1 cjai+`+j. We thus obtain 0 = det(Ai,N) = det(Ai+1,N−1) · δ,
where δ = ai+N −

∑N−1
j=1 c`ai+N+j. If δ 6= 0, we clearly get det(Ai+1,N−1) = 0. On the

other hand, if δ = 0, then it follows that Li lies in the linear span of Li+1, . . . , Li+N−1.
Hence the top-right N -minor of Ai,N vanishes, but this is precisely det(Ai+1,N−1). This
completes the proof of the claim, hence that of the proposition. �

Proof of Proposition 4.1. We begin by choosing α > 0 such that α > log(s)
logp

. We then apply

Proposition 4.4 in Appendix 2 to h and R > pα, to write h = Pu, where P ∈ Cp[t] and
u ∈ Cp[[t]] is invertible, and u and u−1 have radius of convergence > pα. We may clearly

assume that P (0) = 1. We thus can write f = gu−1

P
, and the radius of convergence of gu−1

is > pα. If we write gu−1 =
∑

n≥0 bnt
n, then by Proposition 4.1 in Appendix 2 we have

limsupm|bm|
1/m
p < p−α. Therefore there is m0 such that

(19) |bm|p ≤ p−mα for all m ≥ m0.

Let us write f =
∑

n≥0 ant
n. Using the notation in Lemma 4.2, we need to show that

we can choose N such that det(Ai,N) for all i � 0. The key is to compare |det(Ai,N)|p
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and |det(Ai,N)|∞. Using condition 1) is the proposition, we get

|det(Ai,n)|∞ ≤
∑

σ∈Sn+1

|
N∏
α=0

|ai+α+σ(α)|∞ ≤ CN+1(N+1)!·s2
∑N
j=0(i+j) = CN+1(N+1)!·s(N+1)(2i+N).

On the other hand, let us write P = 1 + λ1t+ . . .+ λrt
r, so that bi = ai + c1ai−1 +

. . . + crai−r for every i ≥ r. Suppose that N + 1 = r + `, and let T0, . . . , TN denote the
columns of the matrix Ai,N . Starting with j = N and going down up to j = r, we may
replace Tj by Tj +λ1Tj−1 + . . .+λrTj−r, without changing det(Ai,N). In this way, we have
replaced in the last ` columns each aj by bj. Since all am are in Z, we have |am|p ≤ 1, and
is we assume i ≥ m0, we deduce using (19) that

|det(Ai,N)|p ≤ p−2α
∑`−1
j=0(i+r+j) = p−α`(2i+2r+`−1).

It follows from definition that if m is any nonzero integer, then |m|∞ ≥ |m|−1p . We
conclude from the above that if det(Ai,N) is nonzero, then

pα`(2i+2r+`−1) ≤ |det(Ai,N)|−1p ≤ |det(Ai,N)|∞ ≤ CN+1(N + 1)!s(N+1)(2i+N).

By taking log, we get

α`(2i+ 2r + `− 1)log(p) ≤ (r + `)(i+ r + `)log(s) + log(C`+r(`+ r)!).

If ` is fixed and i � 0, this can only happen if α` · log(p) ≤ (r + `)log(s). However, by
assumption we have α · log(p) > log(s), hence if `� 0 we have α` · log(p) > (r+ `)log(s),
and therefore det(Ai,N) = 0 for all i� 0. This completes the proof of the proposition. �

We can now complete Dwork’s proof of the rationality of the zeta function.

Theorem 4.3. If X is a variety defined over a finite field Fq, then the zeta function
Z(X, t) is rational.

Proof. We have seen in Remark 2.3 in Lecture 3 that, arguing by induction on dim(X),
it is enough to show that Z(X, t) is a rational function when X is a hypersurface in Ad

Fq
,

defined by some nonzero f ∈ Fq[x1, . . . , xd]. We denote by Hi the hyperplane (xi = 0),
where 1 ≤ i ≤ d. For every I ⊆ {1, . . . , d} (including I = ∅), we put

XI = X ∩

(⋂
i∈I

Hi

)
and X◦I = XI r

(⋃
i 6∈I

Hi

)
.

We have a disjoint decomposition into locally closed subsets X =
⊔
I X

◦
I , hence Proposi-

tion 3.7 in Lecture 2 implies

(20) Z(X, t) =
∏

I⊆{1,...,d}

Z(X◦I ).

Note that XI is isomorphic to a hypersurface in Ad−#I
Fq

, and using the notation introduced

in §1, we have Z(X◦I , t) = Z̃(XI , t). By Proposition 3.1, we can write Z(X◦I , t) as the
quotient of two formal power series in Cp[[t]], having infinite radii of convergence. Formula
(20), implies that Z(X, t) has the same property.
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Recall that Z(X, t) has nonnegative integer coefficients. Furthermore, if we write
Z(X, t) =

∑
n≥0 ant

n, then an ≤ qdn for every n. Indeed, we have |X(Fqn)| ≤ qdn for
every n ≥ 1. Since the exponential function has non-negative coefficients, we deduce that
an ≤ bn, where∑

n≥0

bnt
n = exp

(∑
n≥1

qdntn

n

)
= exp(−log(1− qdt)) =

1

1− qdt
=
∑
n≥0

qdntn.

Therefore an ≤ qnd for all n ≥ 0, and we can apply Proposition 4.1 to conclude that
Z(X, t) is a rational function. �

Note the unlike the proof of the rationality of the zeta function described in Lecture 5
(using `-adic cohomology), the above proof is much more elementary, as it only uses some
basic facts about p-adic fields. At the same time, its meaning is rather mysterious. A lot of
activity has been devoted to giving a cohomological version; in other words, to constructing
a p-adic cohomology theory, and a corresponding trace formula, that would “explain”
Dwork’s proof. Such cohomology theories are the Monsky-Washnitzer cohomology (which
behaves well for smooth affine varieties, see [vdP]) and the crystalline cohomology of
Berthelot and Grothendieck (which behaves well for smooth projective varieties, see [Ber]).
More recently, Berthelot introduced the rigid cohomology [LeS] that does not require
smoothness, and which extends the Monsky-Washnitzer and the crystalline cohomolgy
theories, when these are well-behaved.

References

[Ber] P. Berthelot, Cohomologie cristalline des schémas de caractristique p > 0, Lecture Notes in
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