LECTURE 9. DWORK’S PROOF OF RATIONALITY OF ZETA
FUNCTIONS

In this lecture we present Dwork’s proof | | for the first of the Weil conjectures,
asserting the rationality of the Hasse-Weil zeta function for a variety over a finite field.
We follow, with small modifications, the presentation in [l[Kob]. We freely make use of the
basic facts about p-adic fields as covered in Appendix 2.

1. A FORMULA FOR THE NUMBER OF Fq—POINTS ON A HYPERSURFACE

Recall that our goal is to prove the rationality of the zeta function of an algebraic
variety X over F,. As we have seen in Lecture 3, in order to prove this in general, it is
enough to prove it in the case when X is a hypersurface in A%q, defined by some f €
F,[z1,...,2zq]. Furthermore, an easy argument based an induction and on the inclusion-
exclusion principle, will allow us to reduce ourselves to proving the rationality of

7 Ny n
Z(X,t) :=exp <§ p t ) ,
where
N), = H{u = (u1,...,uq) € an | f(u) =0,u; # 0for alli}|.
Hence from now on we will focus on Z(X,t).

The starting point consists in a formula for Ny in terms of an additive character of
F ;. By this we mean a group homomorphism x: F,» — Q,. We say that such a character
is trivial if x(u) = 1 for every u € F,. The main example that we will need is the following,

Lemma 1.1. If ¢ € Q, is a primitive root of 1, then x: Fgn — Q,(c) given by x(u) =
e "Fan/Fo (4) s a nontrivial additive character of Fn.

Proof. 1t is clear that ¢: F, = Q,(¢) given by ¢)(m mod p) = €™ is an injective homomor-
phism. Since Trg_, /r, is additive, we deduce that y is an additive character. If y is trivial,
then Trg,, sk, (u) = 0 for every u € Fy. This contradicts the fact that the bilinear pairing
(u,v) = Trp,./r,(u,v) is nondegenerate (recall that Fyn is separable over F}). O

Remark 1.2. Since F/F, is Galois, with Galois group cyclic and generated by the
Frobenius morphism, it follows that for every a € Fyn, we have Trg ., /r,(a) = a + a? +

...+ a™ ", where ¢ = p°.

Lemma 1.3. If x is a nontrivial additive character of Fyn, then Zuqun x(u) =0.
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Proof. Let v € Fn be such that x(v) # 1. We have

doxw) = > x(w+v)=x@)- > xw),

UEFqn UEFqn uEFqn
which implies the assertion in the lemma since y(v) # 1. O
Suppose now that f € F,[x1,...,z,] is as above, and 1), is a nontrivial additive char-

acter of F . It follows from Lemma 1.3 that for every a € F n, we have Zvqun Yn(va) =0,
unless a = 0, in which case the sum is clearly equal to ¢". Therefore we have

S dulof(w) = Nig"

uE(F?, )4 vEF 4

Since the sum of the terms corresponding to v = 0 is (¢" — 1)¢, we conclude that

(1) Y Ualvf(w) = Nyg" — (¢" = 1)~

u€(Fry )4 veF

The main result of this section will be a formula for the left-hand side of (1) by
applying a suitable analytic function to the Teichmiiller lifts of uq, ..., u,, v. Furthermore,
the analytic functions corresponding to the various n will turn out to be related in a
convenient way. Let us fix a primitive root € of 1 of order p in Q_p. For every a € Fym,
we denote by a € Z,(,m) the Teichmiiller lift of a (see Appendix, §2). The key ingredient is
provided by a formal power series © € Q,(¢)[t], that satisfies the following two properties:

P1) The radius of convergence of © is > 1.
P2) For every n > 1 and every a € Fyn, we have

) e — @) - 0 ).

Note that by Lemma 1.1, the left-hand side of (2) is a nontrivial character of Fn. Fur-
thermore, note that if a € Fyn, then [a], = 1, hence ©(a?") is well-defined by P1).

Let us assume for the moment the existence of such ©, and let us see how we can
rewrite the left-hand side of (1). Suppose that f = ZmeZ‘i cma™ € Fylzy, ..., x4], where
0

for m = (my,...,my) we put 2™ = " --- 2'*. Note that only finitely many of the c,,
are nonzero. It is clear that for u = (uy, ..., uq) € (F}.)? and v € F},, we have
(3) Ua(vf(@) = [T ¢nlemoui™---uge).

mEZ%O

We take o, (a) = & "Fan/ 7@ and let

(4) Gy, x) = H O(emyz™) € Qulx1, - .-, x4, Y]

d
mEZZO
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hence (2) and (3) imply

(5) S ta(vf(u) > (HGW Ni,...uqui)).

u€g( F* d UEF* v ul,...,udGFZn

We will use this formula in §3 to prove that Z (X,t) can be written as the quotient of two
formal power series in C,[t], both having infinite radius of convergence.

2. THE CONSTRUCTION OF ©

We now explain how to construct the formal power series ©® whose existence was
assumed in the previous section. Note first that it is enough to do the construction when
q = p: indeed, if ©; € Q,(¢)[t] satisfies P1) and P2) for ¢ = p, and for ¢ = p® we take
O(t) = ©1(t)O(tP) --- ©1(tP ), then O satisfies P1) and P2) for ¢. Indeed, if R > 1 is the

radius of convergence of Oy, then the radius of convergence of © is at least R/?"" > 1.

Furthermore,
ne—1

e—1
e (a) = [ @@ = [[©@").
i=0 §=0

Therefore, in the rest of this section we assume ¢ = p.

We begin by considering the formal power series in two variables given by the fol-
lowing infinite product

_ xpn _wpn—l
Fla,y) = (1+y) (1 +) 7 (1) 7 € Qleyl
Note that if 1 4 h; is the i factor in the above product, then h; € (y?" '), hence the
above product gives, indeed, a formal power series’.

Proposition 2.1. We have F(x,y) € Z,[z,y]*.

The following lemma gives a general criterion for proving an assertion as in the
proposition.

Lemma 2.2. If f € Q,[z,y] is such that f(0,0) =1, then f € Z,[z,y] if and only if

f(a?, yP)
(©) 7oy

Proof. Suppose first that f € Z,[z,y]. Since f(0,0) = 1, it follows that f is invertible
and % € 1+ (x,y)Z,[z,y]. We deduce that flp, hence also f(x D Y lies in 1+ (2, y)Z, [z, y].
If f € Fylr,y] is the reduction of f mod pZ,[z,y], we clearly have f(x?,y?) = f(x,y)P.

This implies that I y ) lies in 1 + p(z,y)Z,[x,y], as required.

€1+ p(x,y)Zy[z,y].

IThe general assertion is that if h; € (z,y)N¢ are such that lim; ., N; = oo, then [LA+h)is a
formal power series, as the coefficient of each monomial x™y™ comes from only finitely many factors in
the product.

20f course, since F has coefficients in Q, this is equivalent to saying that F' has coefficients in Z,z).
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Conversely, suppose that (6) holds, and let us write f = >~ .. a;;2'y/, with a;; €
Q, and agpo = 1. By hypothesis, we may write

p
(7) > ity = (Z @i,jxiyj> Y bty
i,j>0 i,j>0 i,j>0

where by = 1, and all other b; ; lie in pZ,. Arguing by induction, we see that it is enough
to show the following: if o, 5 € Z>, not both zero, are such that ay , € Z, for all (k, £) with
k < o and ¢ < 3 such that one of the inequalities is strict, then a, 3 € Z,. Let us consider
the coefficient ¢, 5 of 2%y in the power series in (7). By considering the left-hand side of
(7), we see that ¢, g = 0 unless p divides both o and 3, in which case it is equal to aq/p 5/p-
By considering the right-hand side of (7), we see that ¢, 3 = pas s+ Q1+ ...+ Q,, where
each @); is a product of the form Nbyeay, ¢, - - - ar, ¢, for some multinomial coefficient
N € Z, and with all (k;, ¢;) having the property that k; < « and ¢; < 3, with one of
the inequalities being strict. It follows that every @); lies in Z,, and if @); is not in pZ,,
then k = ¢ = 0, and ¢, 52°y” = (ag2"y*)? for some k and ¢. This can happen only when
both o and 3 are divisible by p, and in this case @, is equal to a” IpB/p" Furthermore,
since in this case we have ag/pﬂ/p = q/p,p/p (Mmodp), we deduce that a, 3 € Zy, and this
completes the proof of the proposition. O

Remark 2.3. It should be clear from the proof of the lemma that a similar statement
holds for formal power series in any number of variables. We restricted to the case of
two variables, which is the one we will need, in order to avoid complicating too much the
notation.

Proof of Proposition 2.1. Since we clearly have F'(0,0) = 1, we may apply Lemma 2.2, so

it is enough to show that Z (z ’y ) lies in 1 + p(z,y)Z,. By definition, we have

p2_ 2P° 02
F(a?,y?) _ (147" (1+y7") 7 -(1+y”) » ---_(1+yp)x_((1+yp)>‘”
F p oP® P (1 pz \ (1 P
(I,y) (1+y)paz (1+yp)xﬂ—m,(1_|_yp2) » ( +y) ( _'_y)
In order to see that this lies in 1 + p(z,y)Z,[z,y], we apply Lemma 2.2 in the other
direction: since g = 1+y € Z,[y], and ¢g(0) = 1, we deduce that Hy = 1+ pw, for some

+y)P
w € yZ,[y]. It follows from definition that
zz—1)...(e—m+1) . .

(1+pw)zzl+z p— pmw™,
m>1
and £ e pZ, for every m > 1. Indeed, we have
m
ordy () = ) < YL = o
i>1 z>0
We conclude that <813§3> € 1+ p(x,y)Z,[z,y], which completes the proof. O

Recall that ¢ € Q, is our fixed primitive root of order p of 1. Let A = ¢ — 1. The
following estimate for |A|, is well-known, but we include a proof for completeness.
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1/(p=1)
Lemma 2.4. With the above notation, we have |\, = (%) .

Proof. Since (1 + A\)? = 1, it follows that )\ is a root of the polynomial h(z) = 2P~ +
St (P)aP~'~". Since all coefficients of f but the leading one are divisible by p, and h(0)

is not divisible by p?, it follows from Eisenstein’s criterion that h € Q,[z] is an irreducible
polynomial. This shows that Q,(¢) = Q,(\) has degree (p — 1) over Q,.

Every o: Q,(¢) — Q, must satisfy o(¢) = & for some 1 < i < p—1, and o is
uniquely determined by . This shows that Q,(¢) is a Galois extension of Q,, and since
(Q,(e) : Q] = n — 1, we conclude that the Galois conjugates of ¢ are precisely the £,
with 1 < < p — 1. In particular, we have |1 —¢|, = |1 — &|,, for every 1 <i < p. On the
other hand, we have

p—1
l+a+... +2Pt :H(x—ai),
i=1

hence J["— (1 — &) = p. We thus deduce

o (1)
e~ 1], = [p|/® =(1—9) |

0

We put ©(t) = F(t,\). We first show that this is well-defined and has radius of
convergence > 1.

Lemma 2.5. We have © € Q,(¢)[t], and its radius of convergence is at least p*/®=1 > 1.

Proof. Let us write F(z,y) = >, (ano Ampny™) ™. By Proposition 2.1, we have

A € Zy, for every m and n. We claim that a,,, = 0 whenever m > n. Indeed, note that
in

(1_i_y)xzzx(x—1)...(:10—7”H—1)yn7

n!
n>0

every monomial x‘y/ that appears with nonzero coefficient, has 7 < j. The same then

i pzfl

holds for each (1+ ypi) T , for 4 > 1. Since this property holds for each of the factors
in the definition of F'(x,y), it also holds for F', as claimed.

Since |amn|, < 1 for every m and n, each series ano amny" has radius of conver-
gence at least 1 > |\|,, hence F(t, \) is a well-defined series in Q,(¢)[t]. Furthermore, for

every m we have
| Z A A" |p = | Z Am A" [p < AL

n>0 n>m

This implies that the radius of convergence of F(t,\) is at least || 1 = A N

We now show that © also satisfies the property P2) from §1 and thus complete the
proof of the existence of ©® with the required properties.
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Lemma 2.6. For every n > 1, and every a € Fyn, we have

e —o@e@) - e@ ).

Proof. Note first that since © has radius of convergence larger than 1, and W’i\p is either
1 or 0, we may apply © to the @' . Let us compute, more generally,

n—1 ) n—1 . et apmﬁ»iiapm{»ifl

[[F@. y)=T[+y™  JIQ+y")==

i=0 i=0 m>1

_ _,m—1
ap?’r1,~l»'r7, 1_gp

~ o~ ~,n—1 m ~ o~ ~n—1
= (T [T )T = (LT
m>1
where the last equality follows from the fact that @”" = @. Since A = ¢ — 1, in order to
complete the proof of the lemma it is enough to show that

1

_ gTern /(@)

(8) Ea'+ap+...+ap"’

Recall that F,» is a Galois extension of F,, with Galois group isomorphic to Z/nZ, and
generated by o, where o(u) = u?. By Theorem 2.1 in Appendix 2, we have an isomorphism
G(QY"/Q,) ~ G(F,n/F,), and let & be the automorphism of Q4" corresponding to o.
Since & (a)?" = 7(a), it follows that o(a) is the Teichmiiller lift of its residue class, which
is o(a) = a?. Therefore 7(a) = a?. We conclude that 31"/ @ € Z,, and it clearly lies
over Y.t aV = Trg,./r,(a). Therefore in order to show (8), we see that it suffices to
show that if w € Z, lies over b € F,, then ¥ = &b, where the left-hand side is defined
as (1 + A\)*. We may write w = pwy + ¢ for some ¢ € Z, and using Proposition 5.3 in
Appendix 2, we obtain

T+ =((1+X)" -1+ N =1-&'=£"
This completes the proof of the lemma. U

3. TRACES OF CERTAIN LINEAR MAPS ON RINGS OF FORMAL POWER SERIES

Our goal in this section is to establish the following intermediary step towards the
proof of the rationality of the zeta function.

Proposition 3.1. With the notation introduced in §1, for every X = V(f), where f €

F,lz1,...,2,], the formal power series Z(X, t) can be written as a quotient %, where
g, h € C,[t] have infinite radii of convergence.

The proof of the proposition will rely on the formula for the numbers N), coming
out of (1) and (5) in §1, and on a formalism for treating certain linear maps on a formal
power series ring, that we develop in this section.

For N > 1, we consider the formal power series ring R = C,[z1,...,zn], and we
denote by m the maximal ideal in R. We will apply this with N = d + 1, where d is as
in the previous sections. As usual, for @ = (a,...,ay) € ZJZVO, we put % = ' -2}y
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and |a| = Zfil a;. The order ord(h) of h € R is the largest > 0 such that h € m" (we
make the convention that ord(0) = o00). On R we consider the m-adic topology. Recall
that this is invariant under translations, and a basis of open neighborhoods of the origin
is given by {m" | » > 0}. Therefore we have h,, — h when m goes to infinity if and only if
lim,,, 00 ord(f;, — f) = 00. As in the case of a DVR, one shows that one can put a metric
on R that induces the m-adic topology.

We will consider C,-linear maps A: R — R that are continuous with respect to the
m-adic topology. Such a map is determined by its values on the monomials in R. More
precisely, such a map must satisfy

9) lim A(z%) = 0 when |a| — oo,
and for f = )" c,x®, we have A(f) = > coA(z*). Conversely, given a set of elements
(A(2%))aczy, that satisfies (9), we obtain a continuous linear map A given by the above

formula. If we write A(z?) = 3 aqs2®, with aas € C,, then we can represent A by the
“matrix” (aaﬁ)a,ﬁezﬁo- Note that condition (9) translates as follows: for every a, we have

aop = 0 for |B] > 0.

We say that A has finite support if the corresponding “matrix” (aqg) has only finitely
many nonzero entries. In this case A can be identified to an endomorphism of a finite-
dimensional subspace of C,[x1,...,zy] C Cylz1,...,x,], and (assz) can be identified to
the corresponding matrix.

The usual rules for dealing with matrices apply in this setting. If A is described by
the “matrix” (aqp), then

A o) = (Z aa@cﬁ> v

B a B
(note that by hypothesis, the sum » 5 GapCs has only finitely many nonzero terms). If A
and B are linear, continuous maps as above, described by the “matrices” (aqg) and (bag),
then the composition A o B is again linear and continuous, and it is represented by the
product (cap) of the two “matrices”: cap = > Aarybyp-

We now introduce the two main examples of such maps that we will consider. Given
H € R, we define Uy : R — R to be given by multiplication by H: Wy (f) = fH. This
is clearly C,-linear and continuous. If H = ) h,x®, then Wy is represented by the
“matrix” (ha—p)a.s, Where we put h,_s = 0 if a— 8 ¢ Z%,,. Note that Uy, o Uy, = Uy, gy, .

For another example, if ¢ is any positive integer, let T;,: R — R be given by
Tq(Zaeng Aax®) = Zaezgo agex®. It is clear that 7, is C,-linear and continuous. If

H=Y_hoa®€R, let ¥,y =T,0Wy We have
\I’%Hwﬂ) = Tq(z haiUOH—ﬁ) = Tq(z ho—pz®) = Z hqa—ﬁxﬁ'

Therefore W, ; is represented by the “matrix” (hjo—g)a,s-

Lemma 3.2. We have Yy o T, = ¥,y , where Hy(x1,...,xn) = H(z{,... z%).
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Proof. Let H = Zaez‘io hex®, and we put h, = 0 if a ¢ ZT;. We have

(10) Vo T,(Y bpal) = H- > bypa’ =) ( > habqﬁ> .
B B

ol at+B=y
On the other hand,

(11)  T,0H, (; bﬂxff) =T, <Z < > hab5> :ﬂ) => ( > hab5> z”

v qo+B=y v qa+B=qy
In the last sum in (11) we see that (5 has to be divisible by ¢, and we deduce that the two
expressions in (10) and (11) are equal. O

We now discuss the trace of a continuous linear map as above. Given such a map
A: R — R described by the “matrix” (a,gz), we consider the series Zaezg (e 1f this is
0

convergent in C,, we denote its sum by Trace(A). Note that if A has finite support, then
Trace(A) is equal to the trace of any corresponding endomorphism of a finite-dimensional
vector space of polynomials.

Let Ry be the set of those H = ) h,x® € R with the property that there is A/ > 0
Mol
such that |h,|, < (%) for every a € Z%.

Remark 3.3. If H € Ry, then there is p > 1 such that H(ug,...,uy) is convergent
whenever u; € C, are such that |u;| < p for all i. Indeed, with M as above, if p = p?,
where 0 < a < M, then

- - ol 1\ M—alal
|houy s Un |p§|ha|p'p < 1‘9 )

which converges to zero when |a| goes to infinity.
Lemma 3.4. Ry is a subring of R. Furthermore, if j1,...,Jjn are positive integers, and
if H € Ry, then H(x',...,2%) € Ry.

Proof. The first assertion follows from the fact that if M > 0 works for both H; and Hs,
then it also works for H; — Hy and H; H,. The second assertion follows from the fact that
if M works for H, and if j = max{ji,...,jn}, then M/j works for H(z]',...,23). O

Proposition 3.5. Let H € Ry and V = VY, g for some integer ¢ > 2. For every s > 1
the trace of U*® is well-defined, and

(¢° — )NTrace(¥*) = > H(u)H(u)... H(u'"),

where the sum is over all u = (uy,...,uy) € CJ such that ul "t =1 for all i.

Proof. Let us first consider the case s = 1. Recall that if H = ) ho2®, then ¥ is described
by the matrix (h4o—g)a,3. Therefore Trace(V) = Zaezgo h(g-1)a- By assumption, there is

M|al
M > 0 such that |hy|, < (%) for every . In particular, lim|q|— 00 A(g—1)a = 0.
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Furthermore, we have seen in Remark 3.3 that H(uq,...,uy) is well-defined when
lu;] < 1 for all 4. The subset U = {\ € C, | A" = 1} is a cyclic subgroup of C,. If
Ao € U is a generator, then

. —1, if(qg—1)i;
O

v s otherwise.
Therefore
N
Z H(u) = Z Z hou® = Z haH<Zuf‘>
ueUN ueUN aezgo anJZVO i=1 \u;€U

=(¢g—1)" Z ho = (g — 1) Trace(¥).

aE(qAJ)ZgB

This completes the proof when s = 1. Suppose now that s > 2. Using repeatedly
Lemma 3.2, we obtain

U = (T, oWy)* = (T, oWy, 0 U)o (TyoVy) > =(T;0Uy,u)o(TyoWy) > =...

= qu © ‘I/Hqs,l...HqH = \I’qs,Hqs,l...HqH-
It follows from Lemma 3.4 that since H lies in Ry, we also have Hy—1... H.H € Ry.
Therefore we may apply the case s = 1 to deduce that Trace(W#) is well-defined, and that

(¢° — 1)V Trace(V*) = Z Hw)H (@) ... Hu’ ).
ueUN

U

Suppose now that A: R — R is a C,-linear continuous map, described by the
“matrix” (aag)a,s- We define the characteristic power series of A by

(12) det(Id — tA) := Y (1) <Z £(0)dayo(on) - aamg(am)> t,

m>0 o

where the second sum is over all subsets with m elements {a, ..., a,,} of ZY,, and over
all permutations o of such a set. Of course, the definition makes sense if the series that
appears as the coefficient of ¢ is convergent in C,, for every m. It is clear that if A has finite
support, then det(Id — tA) is equal to the characteristic polynomial of a corresponding
endomorphism of a finite-dimensional vector space of polynomials.

Lemma 3.6. If H € Ry, then for every integer q > 2 the characteristic power series of
U =V, g is well-defined, and it has infinite radius of convergence.

Mo
Proof. Let us write H = ) hoa®, and let M > 0 be such that |h,|, < (%) for every
a. We have seen that W is described by the “matrix” (ang), where ans = hjo—p. Given
{ug, ..., un}t C Z]ZVO, and a permutation o of this set, we have
1 > M3 lqai—o(as)]

|aala(al) T aama(am)‘P < (1_9
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Note that |go; — ()| = qlai| — ()] if oy — o(ey) is in Z%, and |go; — o ()| = 0,
otherwise. Furthermore, in the latter case we also have a,,q(a;) = 0. We thus conclude
that
1\ Mla=D(eal+...+lam])
|aa10(a1) e aamo(am)|p S (]_)) .
Since the right-hand side tends to zero when max{|a;|} goes to infinity, it follows that
det(Id — tA) is well-defined.

Furthermore, the above computation shows that if we write det(Id—tA) = "~ bmt™,
then -

M(g—1)(Jaq |+ -+|am])

|bm|113/m§ max (—) )

a1,..,0m p

where the maximum is over distinct oy, ..., a,, € ZY,. When m goes to infinity, we have

M(qg—1 m
M= D]+ fanl)

Q15O m

The above estimate therefore implies that lim,, |bm|,1)/ "™ =0, hence det(Id — tA) has
infinite radius of convergence. O

Proposition 3.7. If A: R — R is a continuous C,-linear map such that det(Id — tA)
and Trace(A®) are well-defined for all s > 1, then

det(Id — tA) = exp (— Z Mﬁ) :

S
s>1

Proof. If A has finite support, then the assertion follows from Lemma 2.2 in Lecture 5.
Our goal is to use this special case to deduce the general one.

Let us consider a sequence (A(™)),.~; of maps with finite support, each described
by the matrix (a(m) )a.gezy. , that satisfies the following condition. For every a and [, we
aB Jo,BE >0

have a&m) = Qqp OT a&m) = 0, and the former condition holds for all m > 0. It is clear that

we can find a sequence (A™)),,~; with this property.

It is convenient to consider on C,[t] (identified to a countable product of copies
of C,) the product topology, where each C, has the usual p-adic topology. Explicitly, a
sequence of formal power series (fi,)m>1, With f,, = Y., bmﬂ-ti, convergesto f =) .., bt
if and only if lim,, , by = b; for every i. Note that if this is the case, and all f,,(0)
are zero, then exp(f,,) converges to exp(f) when m goes to infinity (this is the case if we
replace exp by any other element of C,[t]). Since each A gatisfies the conclusion of the
proposition, in order to complete the proof it is enough to show that

i) 1lim,, 00 det(Id — tA™) = det(Id — tA).
i) lim,,_,0e Trace((A(™)*) = Trace(A®) for every s > 1.
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Let us first check i). We consider the coefficients bgm) and b, of ¢ in det(Id — tA™)
and det(Id — tA), respectively. By definition, we have

(13) b = (1) 5<a)a;7;(m) e agg(aw.

g

By our choice of A™) | every product in the sum above is either zero, or it shows up in the
corresponding expression for by. Furthermore, given any {«;, ..., a,} and any permutation
o of this set, the product €(0)aa,s(a) * * * Gayo(a,) appears in (13) for m > 0. Since we know
that det(Id — tA) exists, the assertion in i) follows.

The proof of ii) is similar. By definition, we have

(14) Trace Z %lag" ag)1a5&g:2¢1

AL,

By hypothesis, each product aﬁ{’f&z o -ag?o)q is either zero, or it is equal to @n 0y * * * Casa. -

Moreover, by hypothesis every product @q,a, - Ga,a,,, appears in (14) if m > 0. Since
Trace(A®) exists, we deduce the assertion in ii). This completes the proof of the proposi-
tion. 0

By Lemmas 3.5 and 3.6, we may apply the above proposition, to get the following
Corollary 3.8. If H € Ry and V =V, g for an integer ¢ > 2, then

det(Id — t¥) = exp (— Z Mf) :

s
s>1
We now apply the above framework to give a proof of Proposition 3.1. Given f &€
F,[z1,...,24], we let N =d+ 1. We begin with the following lemma.
Lemma 3.9. For every n > 1, the formal power series G € R = C,[y,x1,...,xq] defined

in (4) lies in Ry.

Proof. Since G is a product of factors of the form O(cyxi" ---z'*), it follows from
Lemma 3.4 that it is enough to see that ©(ayz(" ---y}'*) lies in Ry whenever |a|, = 1
and my, ..., my € Zso. Furthermore, if ¢ = p¢, then we have taken O(t) = [[Z) Qo(t""),
where © is constructed for ¢ = p. A second application of Lemma 3.4 allows us to reduce
to the case when g = p.

Recall that we have seen in the proof of Lemma 2.5 that if © = Zizo b;it!, then

A i/(p—1)
bil, <[], = (}%) .If a and my, ..., my are as above, then

O(ayx]" - Z bia'y'x™ -

1\ ¥ @1 1\ MlGsima..ima)|
|bia |p |bi, < (_) = (_> )
p D

where M = (p—l)(l-i—n}bl-i-...—i-md)' Therefore ©(ayx(™ - - - x)'*) lies in R,. O

Note that
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We can now prove the result stated at the beginning of this section.

Proof of Proposition 3.1. Since G € Ry, we may apply Proposition 3.5 in order to compute
Trace(¥,q). Note that {w € C, | w? ™" =1} = {& | u € F}, }. We deduce using (1) and
(5) that

(15) N'q"—(g"—1)* = Z (H G, a7, ... {[dqi>> = (¢"—1)" " Trace(¥} ;).

U7u11-~-,ud€F;n

Let us compute

ron_ (om_ 1\d B d | o
(16) P (Z N éq 2 t”) = Z(X,qt) - exp (— > (=1 <Cj> %ﬂ)

n>1 =0

= 7(X, qt)-ﬁexp ((—1)0” (‘;)mgu )) Z(X, qt) - f[ £) 00,

=0 =

On the other hand, using Corollary 3.8 and Lemma 3.9 we get

(17)
d+1 .
n » d+1 qmtn
n_ 1 d+1T P v — -1 d+1—i T Py
exp (}Mj(q 4+ Trace (W) n) exp (;:0:( ) 1) Trace(wy )
d+1 .
=[] det(1d — gitw, )" (%)
=0

It follows from Lemma 3.6 that each det(Id — ¢'t¥, ) has infinite radius of convergence.
Since the expressions in (16) and (17) are equal, we conclude that Z (X, gt) is the quotient

of two formal power series in C,[t] with infinite radius of convergence, hence Z(X,t) has
the same property. 0]

4. THE RATIONALITY OF THE ZETA FUNCTION

The last ingredient in Dwork’s proof for the rationality of the zeta function is
the following proposition. In order to avoid confusion, we denote by |m|. the usual
(Archimedean) absolute value of an integer m.

Proposition 4.1. Let Z(t) = >, -, ant™ be a formal power series in Z[t], that satisfies
the following two properties:

1) There are C,s > 0 such that |a,| < Cs™ for all n > 0
2) The image of Z in C,[t] can be written as a quotzent , where g, h € C,[t] have
finite radii of convergence.

Then Z(t) lies in Q(t).
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We first need a lemma that gives a sharper version of the rationality criterion in
Proposition 2.3 in Lecture 5. We will consider a formal power series f =) ., a,t" with
coefficients in a field K. For every i, N > 0, we consider the matrix A; y = (@ita+8)0<a.8<N-

Lemma 4.2. With the above notation, the power series f is rational if and only if there
is N such that det(A; y) =0 for all i > 0.

Proof. We have f € K(t) if and only if there is a nonzero polynomial Q(t) such that @ f
is a polynomial. If we write Q = by + b1t + ...+ bytY, then the condition we need is that

(18) bNCLi + bN—lai-i-l + ...+ boCLN =0

for all 7 > 0. The existence of by, ..., by, not all zero, that satisfy these conditions clearly
implies that det(A4; x) = 0 for i > 0.

Conversely, suppose that we have N such that det(A4; x) = 0 for ¢ > 0 (say, for
i > 1p), and that N is minimal with this property. For every i, we put

Li = (ai, Ce 7ai+N) & KN+1 and L; = (CLi, Ce ,ai+N_1) € KN.

Claim. We have det(A; y_1) # 0 for every i > iy. If this is the case, since det(A; y) = 0,
it follows that for every ¢« > iy + N, we have L; € Zjvzl Li—j, so that > ., K - L; is
spanned by L;,,...,L;,+n—1. In this case, it is clear that we can find by, ..., by not all
zero such that (18) holds for all ¢ > 4y. Therefore, in order to complete the proof it is
enough to show the claim.

By the minimality assumption in the definition of N, it is enough to show that if
i > ig and det(A; n—1) = 0, then det(A;11ny—1) = 0. Since det(A; y—1) = 0, we have
L, ..., L, n_ linearly dependent. We have two cases to consider. If L] ,..., L;, y_, are
linearly dependent, then it is clear that det(A;;1 y—1) = 0. On the other hand, if this

. . r N-1 T
is not the case, then we can write L; = > 77, ¢;Li, ;.

A; v each a;ig by aipr— Z;V:_ll ¢jaitorj. We thus obtain 0 = det(A; y) = det(A;11,n-1) - 0,

where 6 = a4y — E;V:_ll cotiynyg. If 0 # 0, we clearly get det(A;11n—1) = 0. On the
other hand, if 6 = 0, then it follows that L; lies in the linear span of L; 1,..., Liyn_1.
Hence the top-right N-minor of A; x vanishes, but this is precisely det(A;;1 ny—1). This
completes the proof of the claim, hence that of the proposition. O

Let us replace in the first row of

.. . . log(s)
Proof of Proposition /.1. We begin by choosing o > 0 such that o > 15?' We then apply

Proposition 4.4 in Appendix 2 to h and R > p®, to write h = Pu, where P € C,[t] and

u € C,[t] is invertible, and u and u™' have radius of convergence > p®. We may clearly
1

assume that P(0) = 1. We thus can write f = ggl , and the radius of convergence of gu~

is > p*. If we write gu™! = ano b,t™, then by Proposition 4.1 in Appendix 2 we have
limsup,, |b|p’™ < p~®. Therefore there is mg such that

(19) binlp < p~™< for all m > my.

Let us write f = ano a,t". Using the notation in Lemma 4.2, we need to show that
we can choose N such that det(A4; y) for all i > 0. The key is to compare |det(A4; v)|,
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and |det(A; n)|e. Using condition 1) is the proposition, we get
N
|det(Ai,n>‘oo < Z ‘ H |ai_’_a+a(a)|oO < CN+1(N+1)!~S2Z§VZO(i+j) — CN+1(N_|_1>!.S(N+1)(2Z‘+N)_

UGSn+1 a=0

On the other hand, let us write P =1+ M\t + ...+ A\ t", so that b; = a; + c1a;,_1 +
...+ cra;_, for every @ > r. Suppose that N + 1 = r + ¢, and let Ty, ..., Tx denote the
columns of the matrix A; . Starting with j = N and going down up to j = r, we may
replace T; by T;+MT;—1+ ...+ N1, without changing det(A; y). In this way, we have
replaced in the last ¢ columns each a; by b;. Since all a,, are in Z, we have |a,,|, < 1, and
is we assume i > my, we deduce using (19) that

|det(Ai7N)|p < p—2a Zf;é(i-&-r-ﬁ-j) _ p—aﬁ(2i+2r+€—1)'

It follows from definition that if m is any nonzero integer, then |m|, > |m|;*'. We
conclude from the above that if det(A; 5) is nonzero, then

P < ]det(ALN)\;l < |det(A; v)]oo < CNFUN + 1)lsVHDEN),
By taking log, we get
al(2i + 2r 4+ £ — Dlog(p) < (r +£)(i +r + 0)log(s) + log(C™ (¢ +7)!).
If ¢ is fixed and ¢ > 0, this can only happen if af - log(p) < (r + ¢)log(s). However, by

assumption we have « -log(p) > log(s), hence if £ > 0 we have o/ - log(p) > (r+ £)log(s),
and therefore det(A; y) = 0 for all i > 0. This completes the proof of the proposition. [

We can now complete Dwork’s proof of the rationality of the zeta function.

Theorem 4.3. If X is a variety defined over a finite field ¥, then the zeta function
Z(X,t) is rational.

Proof. We have seen in Remark 2.3 in Lecture 3 that, arguing by induction on dim(X),
it is enough to show that Z(X,t) is a rational function when X is a hypersurface in A%q,

defined by some nonzero f € F,[z1,...,z4]. We denote by H; the hyperplane (z; = 0),
where 1 < ¢ < d. For every I C {1,...,d} (including I = (), we put

X;=Xn (ﬂH) and X7 = X| \ (UH)

iel il
We have a disjoint decomposition into locally closed subsets X = |; X7, hence Proposi-
tion 3.7 in Lecture 2 implies

(20) zix, )= [ 2&xp.
IC{1,...,d}
Note that X is isomorphic to a hypersurface in AdF;#I, and using the notation introduced

in §1, we have Z(X75,t) = Z(X;,t). By Proposition 3.1, we can write Z(X3,t) as the
quotient of two formal power series in C,[¢], having infinite radii of convergence. Formula
(20), implies that Z(X,t) has the same property.
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Recall that Z(X,t) has nonnegative integer coefficients. Furthermore, if we write
Z(X,t) = >, ~gant", then a, < ¢’ for every n. Indeed, we have |X(Fy)| < ¢™ for
every n > 1. Since the exponential function has non-negative coefficients, we deduce that
a, <b,, where

dn4n
" qt 1 nyn
zyﬁzm«z n)mmb@ﬂw%FT:ﬁ=th

n>0 n>1 n>0

Therefore a,, < ¢ for all n > 0, and we can apply Proposition 4.1 to conclude that
Z(X,t) is a rational function. O

Note the unlike the proof of the rationality of the zeta function described in Lecture 5
(using ¢-adic cohomology), the above proof is much more elementary, as it only uses some
basic facts about p-adic fields. At the same time, its meaning is rather mysterious. A lot of
activity has been devoted to giving a cohomological version; in other words, to constructing
a p-adic cohomology theory, and a corresponding trace formula, that would “explain”
Dwork’s proof. Such cohomology theories are the Monsky-Washnitzer cohomology (which
behaves well for smooth affine varieties, see [vdl’]) and the crystalline cohomology of
Berthelot and Grothendieck (which behaves well for smooth projective varieties, see [Ber]).
More recently, Berthelot introduced the rigid cohomology [l.e5] that does not require
smoothness, and which extends the Monsky-Washnitzer and the crystalline cohomolgy
theories, when these are well-behaved.
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