
SPACES OF ARCS IN BIRATIONAL GEOMETRY

MIRCEA MUSTAŢǍ

These lecture notes have been prepared for the Summer school on ”Moduli spaces
and arcs in algebraic geometry”, Cologne, August 2007. The goal is to explain the rele-
vance of spaces of arcs to birational geometry. In the first section we introduce the spaces
of arcs and their finite-dimensional approximations, the spaces of jets. In the second
section we see how to relate the spaces of arcs of birational varieties. If f is a proper
birational morphism between varieties Y and X, then the induced map f∞ at the level
of spaces of arcs is ”almost bijective”. The key result is the Birational Transformation
Theorem, which shows that if X and Y are nonsingular, then the geometry of f∞ is gov-
erned by the order of vanishing along the discrepancy divisor KY/X . In the third section
we give some applications to invariants of K-equivalent varieties, and to the description
of the log canonical threshold in terms of the codimensions of certain subsets in spaces of
arcs.

1. Introduction to jet schemes and spaces of arcs

In this section we construct the spaces of arcs and jets and prove some basic prop-
erties. The jet schemes can be thought of as higher analogues of the tangent spaces of a
scheme. They parameterize maps from Spec k[t]/(tm+1) to our given scheme.

1.1. Jet schemes. Let k be an algebraically closed field of arbitrary characteristic. Sup-
pose that X is a scheme of finite type over k and m a nonnegative integer. A scheme
of finite type Xm over k is the mth jet scheme of X if for every k-algebra A we have a
functorial bijection

(1) Hom(Spec(A), Xm) ' Hom(Spec A[t]/(tm+1), X).

This describes completely the functor of points of Xm. It follows that if Xm exists, then
it is unique up to a canonical isomorphism. Note that in particular, the closed points of
Xm are in bijection with the k[t]/(tm+1)-valued points of X.

Note that if the jet schemes Xm and Xp exist and if m > p, then we have a canonical
projection πm,p : Xm → Xp. This can be defined at the level of the functor of points via
(1): the corresponding map

Hom(Spec A[t]/(tm+1), X)→ Hom(Spec A[t]/(tp+1), X)

is induced by the truncation morphism A[t]/(tm+1) → A[t]/(tp+1). It is clear that these
morphisms are compatible whenever they are defined: πm,p ◦ πq,m = πq,p if p < m < q.

Example 1.1. We clearly have X0 = X. For every m, we denote the canonical projection
πm,0 : Xm → X by πm.

1
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Proposition 1.2. For every X as above and every nonnegative integer m, the mth jet
scheme Xm exists.

Before proving the proposition we give the following lemma.

Lemma 1.3. If U ⊆ X is an open subset and if Xm exists, then Um = π−1
m (U).

Proof. Indeed, let A be a k-algebra and let ιA : Spec(A) → Spec A[t]/(tm+1) be induced
by the truncation morphism. Note that a morphism f : Spec A[t]/(tm+1) → X factors
through U if and only if the composition f ◦ ιA factors through U (factoring through U is
a set-theoretic statement). Therefore the assertion of the lemma follows from definitions.

�

Proof of Proposition 1.2. Suppose first that X is affine, and consider a closed embedding
X ↪→ An such that X is defined by the ideal I = (f1, . . . , fq). For every k-algebra
A, giving a morphism Spec A[t]/(tm+1) → X is equivalent with giving a morphism
φ : k[x1, . . . , xn]/I → A[t]/(tm+1). Moreover, such a morphism corresponds uniquely to
elements ui = φ(xi) =

∑m
j=0 ai,jt

j such that f`(u1, . . . , un) = 0 for every `. We can write

f`(u1, . . . , un) =
m∑
p=0

g`,p((ai,j)i,j)t
p,

for suitable polynomials g`,p depending only on the f`. It follows that Xm can be defined
in A(m+1)n by the polynomials g`,p for ` ≤ q and p ≤ m.

Suppose now that X is an arbitrary scheme of finite type over k. Consider an affine
cover X = U1∪ . . .∪Ur. As we have seen, we have an mth jet scheme πim : (Ui)m → Ui for
every i. Moreover, by Lemma 1.3, for every i and j the inverse images (πim)−1(Ui∩Uj) and
(πjm)−1(Ui∩Uj) are both isomorphic over X to (Ui∩Uj)m. Therefore they are canonically
isomorphic. This shows that we may construct a scheme Xm by glueing the schemes (Ui)m
along the canonical isomorphisms of (πim)−1(Ui∩Uj) with (πjm)−1(Ui∩Uj). Moreover, the
projections πim also glue to give a morphism πm : Xm → X. It is now straightforward to
check that Xm has the required property. �

Remark 1.4. It follows from the description in the above proof that for every scheme
X, the projection πm : Xm → X is affine.

Example 1.5. The first jet-scheme X1 is isomorphic to the total tangent space
Spec(Sym(ΩX/k)). Indeed, arguing as in the proof of Proposition 1.2, we see that it is
enough to show this when X = Spec(R) is affine. In this case, if A is a k-algebra, then
giving a scheme morphism f : Spec(A) → Spec(Sym(ΩX/k)) is equivalent with giving a
morphism of k-algebras φ : R → A and a k-derivation D : R → A. This is the same as
giving a morphism f : R→ A[t]/(t2), where f(u) = φ(u) + tD(u).

Note that if f : X → Y is a morphism of schemes, then we get a corresponding
morphism fm : Xm → Ym. At the level of A-valued points, this takes an A[t]/(tm+1)-
valued point γ of X to f ◦γ. Therefore taking X to Xm gives a functor from the category
of schemes of finite type over k to itself. Note also that the morphisms fm are compatible
in the obvious sense with the projections Xm → Xm−1 and Ym → Ym−1.
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Remark 1.6. The jet schemes of the affine space are easy to describe: we have an iso-
morphism (An)m ' A(m+1)n such that the projection πm : (An)m → (An)m−1 corresponds
to the projection onto the first mn coordinates. Indeed, an A valued point of (An)m
corresponds to a ring homomorphism φ : k[x1, . . . , xn] → A[t]/(tm+1), which is uniquely
determined by giving each φ(xi) ∈ A[t]/(tm+1) ' Am+1.

Remark 1.7. In light of the previous remark, we see that the proof of Proposition 1.2
showed that if i : X ↪→ An is a closed immersion, then the induced morphism im : Xm →
(An)m is also a closed immersion. Moreover, using the description of the ideal of Xm

in terms of the ideal of X, we deduce that more generally, if f : X ↪→ Y is a closed
immersion, then fm is a closed immersion, too.

The following lemma generalizes Lemma 1.3 to the case of an étale morphism.

Lemma 1.8. If f : X → Y is an étale morphism, then for every m the commutative
diagram

Xm
fm−−−→ YmyπX

m

yπY
m

X
f−−−→ Y

is Cartesian.

Proof. Indeed, from the description of the A-valued points of Xm and Ym we see that it
is enough to show that for every k-algebra A and every commutative diagram

Spec(A) −−−→ Xy y
Spec A[t]/(tm+1) −−−→ Y

there is a unique morphism Spec A[t]/(tm+1)→ X making the two triangles commutative.
This is a consequence of the fact that f is formally étale. �

We will say that a morphism of schemes g : V → W is locally trivial with fiber F if
there is a cover by Zariski open subsets W = U1∪ . . .∪Ur such that g−1(Ui) ' Ui×F , the
restriction of g corresponding to the projection onto the first component. The morphism
g will be called piecewise trivial with fiber F if we have a cover by sets Ui as above, but
with Ui only locally closed subsets.

Corollary 1.9. If X is a nonsingular variety of dimension n, then all projections
πm,m−1 : Xm → Xm−1 are locally trivial with fiber An. In particular, Xm is a nonsingular
variety of dimension (m+ 1)n.

Proof. It follows from Lemma 1.3 that it is enough to show the following: if u1, . . . , un form
an algebraic system of coordinates on an open subset U of X, then Um ' U ×Amn, such
that πm,m−1 corresponds to the projection that forgets the last n components. Recall that
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u1, . . . , un ∈ O(U) form an algebraic system of coordinates on U if du1, . . . , dun trivialize
ΩX over U . Since X is nonsingular, we can find such a system of coordinates in the
neighborhood of every point in X.

An algebraic system of coordinates u1, . . . , un gives an étale morphism U → An. Our
assertion follows now from Lemma 1.8 and the fact that it holds for the affine space. �

Example 1.10. If X is a singular curve, then X1 is not irreducible. In fact, the fiber over
every singular point, gives an irreducible component. This follows since the dimension of
each such fiber is at least the dimension of (Xreg)1.

1.2. Spaces of arcs. We consider now the projective limit of the jet schemes. Suppose
that X is a scheme of finite type over k. Since the projective system

· · · → Xm → Xm−1 → · · · → X0 = X

consists of affine morphisms, the projective limit exists in the category of schemes over k.
It is denoted by L(X) and it is called the space of arcs of X. In general, it is not of finite
type over k.

It comes equipped with projection morphisms ψm : L(X)→ Xm that are affine. In
particular, we have ψ0 : L(X)→ X and if U ⊆ X is affine, then

O(ψ−1
0 (U)) = lim−→O(π−1

m (U)).

It follows from the projective limit definition and the functorial description of the
jet schemes that if X is affine, then for every k-algebra A we have

Hom(Spec(A),L(X)) ' lim←−Hom(Spec(A), Xm)

' lim←−Hom(Spec A[t]/(tm+1), X) ' Hom(Spec A[[t]], X).

If we take A = k and X an arbitrary scheme, then every morphism Spec k[t]/(tm+1)→ X
or Spec k[[t]] → X factors through any affine open neighborhood of the image of the
closed point. It follows that for every X, the elements in L(X)(k) correspond to arcs in
X, i.e. we have a bijection

Hom(Spec(k),L(X)) ' Hom(Spec(k[[t]], X).

If f : X → Y is a morphism of schemes, after passing to the limit the morphisms
fm we get a morphism f∞ : L(X)→ L(Y ). We get in this way a functor from k-schemes
of finite type over k to arbitrary k-schemes (in fact, to quasicompact and quasiseparated
k-schemes).

If K is a field containing k, then a K-valued point of L(X) corresponds to a mor-
phism γ : Spec K[[t]] → X. This determines two points on X: the image γ(0) of the
closed point of Spec K[[t]], and the image γ(η) of the generic point of Spec K[[t]].

The properties we have discussed in the previous subsection for jet schemes induce
corresponding properties for spaces of arcs. For example, if f : X → Y is an étale mor-
phism, then we have a Cartesian diagram
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L(X)
f∞−−−→ L(Y )yψX

0

yψY
0

X
f−−−→ Y.

If i : X ↪→ Y is a closed immersion, then i∞ is also a closed immersion. Moreover,
if Y = An, then L(Y ) ' Spec k[x1, x2, . . . , ], such that ψm corresponds to the projection
onto the first (m + 1)n components. As in the proof of Proposition 1.2, starting with
equations for a closed subscheme X of An we can write equations for L(X) in L(An).

From now on we will ignore the scheme structure on the space of arcs of X. In fact,
we will abuse the notation by putting L(X) for L(X)(k), the k-valued points of the space
of arcs of X. This is a topological space, the topology being the restriction of the Zariski
topology from the space of arcs. Note that this is the projective limit topology on L(X)
under the identification of L(X) with the projective limit of (the k-valued points of) Xm.

1.3. Complements. If char k = 0, equations for spaces of arcs and for jet schemes can
be explicitly written down by ”formally differentiating”, as follows. If S = k[x1, . . . , xn],

let us write S∞ = k[x
(m)
i | 1 ≤ i ≤ n,m ∈ N], so Spec(S∞) = L(An). In practice, we

simply write xi = x
(0)
i , x′i = x

(1)
i , and so on. Note that on S∞ we have a k-derivation D

defined by D(x
(m)
i ) = x

(m+1)
i .

If f ∈ R, then we put f ′ := D(f), and we define recursively f (m) := D(f (m−1)).
Suppose now that R = S/I, where I is generated by f1, . . . , fr. We claim that if

(2) R∞ := S∞/(fi, f
′
i , . . . , f

(m)
i , . . . | 1 ≤ i ≤ r),

then L(Spec(R)) ' Spec(R∞).

Indeed, if A is a k-algebra, a morphism φ : k[x1, . . . , xn]→ A[[t]] is given by

φ(xi) =
∑
m∈N

a
(m)
i

m!
tm.

If f is an arbitrary polynomial in k[x1, . . . , xn], we see that

φ(f) =
∑
m∈N

f (m)(a, a′, . . . , a(m))

m!
tm

(this can be checked noting that both sides are additive and multiplicative in f , which
reduces the proof to f = xi, when it is trivial). It follows that φ induces a morphism

R → A[[t]] if and only if f
(m)
i (a, a′, . . . , a(m)) = 0 for every m and every i ≤ r. This

completes the proof of the above claim.

Remark 1.11. Note that D induces a derivation D on R∞. Moreover, (R∞, D) is uni-
versal in the following sense: we have a k-algebra homomorphism j : R→ R∞ such that if
(T, δ) is another k-algebra with a k-derivation, and if j′ : R→ T is a k-algebra homomor-
phism, then there is a unique k-algebra homomorphism h : R∞ → T such that h ◦ j = j′
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and h commutes with the derivations, i.e. δ(h(u)) = h(D(u)) for every u ∈ R∞. This is
the starting point of the applications of the spaces of arcs in differential algebra, see [Bu].

Of course, if we consider finite level truncations, then we obtain equations for the

jet schemes. More precisely, if we put Sm := k[x
(j)
i | i ≤ n, 0 ≤ j ≤ m] and

Rm := Sm/(fi, f
′
i , . . . , f

(m)
i | 1 ≤ i ≤ r),

then Spec(Rm) ' (Spec(R))m. Moreover, the projections

(Spec(R))m → (Spec(R))m−1

are induced by the obvious morphisms Rm−1 → Rm.

Example 1.12. If X ⊆ A2 is the cuspidal curve defined by (u2 − v3), then X2 is defined
in Spec k[u, v, u′, v′, u′′, v′′] by

(u2 − v3, 2uu′ − 3v2v′, 2(u′)2 + 2uu′′ − 6v(v′)2 − 3v2v′′).

Exercise 1.13. Show that if f : X → Y is a smooth, surjective morphism of schemes of
finite type over k, then the induced morphism fm : Xm(k)→ Ym(k) is surjective for every
m ∈ N, and a similar assertion holds for the spaces of arcs.

Exercise 1.14. Let X be a scheme of finite type over k.

i) If X is smooth, then all maps Xm → Xm−1 are surjective. Is the converse true ?
ii) Show that if γm−1 ∈ Xm−1 is an (m − 1)-jet lying over x ∈ X, then the fiber

(πm,m−1)
−1(γm−1) is either empty, or is isomorphic to Tx(X).

Exercise 1.15. Suppose that X ⊆ An is defined by an ideal generated by homogeneous
polynomials of degree d ≥ 1. Recall that for every m we denote by πm : Xm → X the
canonical projection.

i) Show that for every m ≤ d− 1 we have π−1
m (0) ' Amn.

ii) Show that for every m ≥ d there is an isomorphism

π−1
m (0) ' Xm−d × An(d−1).

iii) Deduce that if X is the affine cone over a smooth projective variety of dimension
r, then for every m ≥ d we have

dim Xm = max{(m+ 1)(r + 1), dim Xm−d + n(d− 1)}.

Exercise 1.16. Show that for every schemes X and Y and for every m ∈ N, there is a
canonical isomorphism (X × Y )m ' Xm × Ym (a similar assertion holds for the spaces of
arcs).

Exercise 1.17. Show that if X is a group scheme over k, then Xm is also a group scheme
over k for every m ∈ N (and a similar assertion holds for L(X)).

Exercise 1.18. Show that if G is a a group scheme over k acting on the scheme X, then
we have an action of Gm on Xm for every m ∈ N (and a similar assertion holds for the
spaces of arcs).



SPACES OF ARCS IN BIRATIONAL GEOMETRY 7

Exercise 1.19. Show that if A is an abelian variety, then for every m we have an iso-
morphism (of varieties, not of group schemes)

Am ' π−1
m (0)× A.

The goal of the next exercise is to describe the space of arcs of a toric variety,
following [Is]. Suppose that X = X(∆) is a toric variety, where ∆ is a fan in a lattice N
(we follow the notation for toric varieties from [Fu]). Let T = TN be the torus acting on
X, and let D1, . . . , Dd be the prime invariant divisors on X. Recall that the Di are also
toric varieties, hence in order to describe L(X) it is enough to describe

L(X)′ := L(X) r ∪di=1L(Di)

(we may continue by induction on dimension).

Exercise 1.20. With the above notation, prove the following description of L(X)′.

i) L(X)′ is invariant under the action of L(T ).
ii) If v ∈ N ∩ |∆|, then we have an arc γv : Spec k[[t]] → X defined as follows. If

v ∈ N ∩ |σ| for some σ ∈ ∆, then γv corresponds to

k[σ∨ ∩M ]→ k[[t]], χu → t〈u,v〉.

Show that the stabilizer of γv is trivial.
iii) Show that there is a bijection between the points in N ∩ |∆| and the orbits of the
L(T )-action on L(X)′, that takes v to γv.

Remark 1.21. With the notation in the previous exercise, there is a corresponding action
of Tm on Xm for m ∈ N. However, we do not know a similar description of the orbits.

We will see in the next section that it is a typical phenomenon to have a decompo-
sition of the space of arcs of a variety in a countable disjoint union of pieces. In this case,
the interesting information is understanding the closures of these pieces. In the case of
the previous exercise, this is done by the following

Exercise 1.22. With the notation in Exercise 1.20, show that if v and w are in N ∩ |∆|,
then L(T ) · γv ⊆ L(T ) · γw if and only if the following holds: if σ ∈ ∆ is such that v lies
in the interior of σ, then both w and v − w lie in σ.

We describe now a similar picture for determinantal varieties. Fix positive integers
m and n, and let r ≤ min{m,n}. We consider the determinantal variety

X(r) := {A ∈Mm,n(k) | rk(A) ≤ r}.
Note that we have an action of GLm × GLn on X(r) given by (P,Q) · A = PAQ−1. The
orbits are parameterized by {0, 1, . . . , r}, all matrices of the same rank lying in the same
orbit.

Exercise 1.23. Consider the induced action of L(GLm)×L(GLn) on L(X(r)). Show that
the orbits are parameterized by

{(a1, . . . , as) | s ≤ r, a1 ≥ a2 . . . ≥ as, ai ∈ N},
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such that the orbit corresponding to (a1, . . . , as) is contained in the closure of the orbit
corresponding to (b1, . . . , bs′) if and only if s ≤ s′ and ai ≥ bi for all i ≤ s.

2. Spaces of arcs and birational transformations

If f : X → Y is a proper birational morphism, then the Valuative Criterion for
Properness implies that the induced map f∞ : L(X) → L(Y ) is ”almost bijective”. As
we will see, this can be combined in characteristic zero with resolution of singularities
in order to study the space of arcs of a singular variety by relating it to the space of
arcs of a resolution of singularities. The powerful result that has many applications is
the Birational Transformation Theorem: it shows that (at least when both X and Y are
nonsingular) the geometry of f∞ is governed by the order of vanishing along the relative
canonical divisor KX/Y .

Note that since f is birational there is an open subset U of Y such that f−1(U)→ U
is an isomorphism. Ideally, we could find a decomposition of Y in finitely many locally
closed subsets Wi such that over each Wi, f is locally trivial with a suitable fiber. While
this is not true in general (in the algebraic category), the Birational Transformation
Theorem says that such a statement holds, in a suitable sense, for f∞ (though, as one
might expect, the decomposition will have infinitely many terms).

2.1. A theorem of Kolchin. Let X be a variety over an algebraically closed field k
(hence X is reduced and irreducible). A key idea is that certain subsets in the space of
arcs L(X) are ”small” and they can be ignored (from the point of view of the theory
of Motivic Integration these sets have measure zero, see for example [Ve]). We make an
ad-hoc definition: a subset of L(X) is called thin if it is contained in L(Y ) for a proper
subscheme Y of X. It is clear that a finite union of thin subsets is again thin. Note also
that if f : Y → X is a morphism, and if W ⊆ L(X) is thin, then f−1

∞ (W ) is also thin.
The following proposition shows that a proper birational morphism induces a bijective
map on the complement of suitable thin sets.

Proposition 2.1. Let f : Y → X be a proper birational morphism of varieties over k.
If Z is a proper closed subset of X such that f is an isomorphism over X r Z, then the
induced map

L(Y ) r L(f−1(Z))→ L(X) r L(Z)

is bijective.

Proof. Let U = X r Z. Since f is proper, the Valuative Criterion for Properness implies
that an arc γ : Spec k[[t]]→ X lies in the image of f∞ if and only if the induced morphism
γ : Spec k((t)) → X can be lifted to Y (moreover, if the lifting of γ is unique, then the
lifting of γ is also unique). On the other hand, γ does not lie in L(Z) if and only if γ
factors through U ↪→ X. In this case, the lifting of γ exists and is unique since f is an
isomorphism over U . This completes the proof of the proposition. �
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We emphasize that despite the fact that f∞ in the above proposition is ”almost
bijective”, it is very far from being an isomorphism. We will see in the next section how
the codimension of certain subsets are changed by f∞.

We can use the above proposition to prove the following result of Kolchin.

Theorem 2.2. If X is a variety over an algebraically closed field k of characteristic zero,
then L(X) is irreducible.

Proof. If X is nonsingular, then the assertion is easy: we have seen that every Xm is a
nonsingular variety. Since

L(X) = lim←−Xm,

it follows that L(X), too, is irreducible.

In the general case we do induction on n = dim(X), the case n = 0 being trivial.
By Hironaka’s Theorem, there is a resolution of singularities f : Y → X. This is a proper
birational morphism, with Y nonsingular. Suppose that Z is a proper closed subset of X
such that f is an isomorphism over U = X r Z. It follows from Proposition 2.1 that

L(X) = L(Z) ∪ Im(f∞).

Moreover, the nonsingular case implies that L(Y ), hence also Im(f∞), is irreducible.
Therefore, in order to complete the proof it is enough to show that L(Z) is contained in
the closure of Im(f∞).

Consider the irreducible decomposition Z = Z1 ∪ . . . ∪ Zr, hence L(Z) = L(Z1) ∪
. . . ∪ L(Zr). Since f is surjective, for every i there is an irreducible component Yi of
f−1(Zi) such that the induced map Yi → Zi is surjective. Since we are in characteristic
zero, by Generic Smoothness we can find open subsets Ui and Vi in Yi and Zi, respectively,
such that the induced morphisms gi : Ui → Vi are smooth and surjective. In particular,
we have

L(Vi) = Im((gi)∞) ⊆ Im(f∞).

On the other hand, every L(Zi) is irreducible by induction. Since L(Vi) is an open
nonempty subset of L(Zi), it follows that

L(Zi) ⊆ Im(f∞)

for every i. This completes the proof of the theorem. �

Remark 2.3. In fact, Kolchin’s Theorem holds in a much more general setup, see [Kln].
Note also that we proved something slightly weaker even in our restricted setting. The
result in loc. cit. states that the scheme L(X) is irreducible, while we proved only
that L(X)(k) is irreducible. In fact, one can get the stronger statement from ours by
showing that L(X)(k) is dense in L(X). In turn, this can be proved in a similar way with
Theorem 2.2 above. For a different proof of (the stronger version of) Kolchin’s Theorem,
without using resolution of singularities, see [IK].
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2.2. The Birational Transformation Theorem. From now on, for simplicity, we as-
sume that X is a nonsingular variety, say of dimension n. Recall that in this case, each
projection πm,m−1 : Xm → Xm−1 is locally trivial with fiber An. We also make an extra
assumption on the base field: we assume that k is uncountable.

If n ≥ 1, the space of arcs L(X) is infinite-dimensional. We will deal mostly with
certain subsets of L(X) that come from a finite level: a cylinder in L(X) is a subset of
the form C = ψ−1

m (S) for some m and some constructible subset S of Xm (recall that a
set is called constructible if it can be written as a finite union of locally closed subsets).
It is clear that the cylinders form an algebra of sets.

A cylinder is called closed, open, locally closed or irreducible if the set S can be
taken with the corresponding property. Every closed cylinder has a unique decomposition
in irreducible components. If C = ψ−1

m (S), then we put

codim(C) := codim(S,Xm) = (m+ 1)n− dim(S).

Note that since the projections πm,m−1 are locally trivial, this definition is independent of
m.

Remark 2.4. Chevalley’s Constructibilty Theorem implies that for every cylinder C ⊆
L(X), its image ψm(C) is constructible for every m.

Interesting cylinders arise as follows. Suppose that Z is a proper closed subscheme
of X. We define the function

ordZ : L(X)→ N ∪ {∞}
to be given by the order of vanishing along Z. More precisely, if γ : Spec k[[t]]→ X, then
the scheme-theoretic inverse image of the ideal defining Z is an ideal in k[[t]] generated
by tordZ(γ) (we make the convention that if the ideal is zero, then ordZ(γ) =∞).

The contact locus of order m with Z is the set Contm(Z) := ord−1
Z (m). Similarly,

we put Cont≥m(Z) := ord−1
Z (≥ m). Note that we have

Cont≥m(Z) = ψ−1
m−1(Zm−1),

hence Cont≥m(Z) is a closed cylinder. We deduce that Contm(Z) is a locally closed
cylinder for every m. Note also that F−1

Z (∞) = L(Z) is thin.

The fact that k is uncountable plays a role in the following lemma

Lemma 2.5. If C1 ⊇ C2 ⊇ . . . is a sequence of nonempty cylinders, then ∩iCi is
nonempty.

Proof. The proof is easy and we leave it as an exercise (see Exercise 2.14 below). �

The following result explains why the behavior on thin subsets can often be ignored.

Proposition 2.6. If C is a nonempty cylinder in L(X), then C is not thin.

Proof. The proof is easy, and we leave it as an exercise (see Exercise 2.15). �
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Corollary 2.7. If Z is a proper closed subset of X, then

lim
m→∞

codim Cont≥m(Z) =∞.

Proof. If the above assertion is not true, then there are N and m0 such that we have
codim Cont≥m(Z) = N for every m ≥ m0. Note that the codimension of a closed cylin-
der is the minimum of the codimensions of its irreducible components. Since we have
Cont≥(m+1)(Z) ⊆ Cont≥m(Z), it follows that for every m ≥ m0 + 1, if C is an irreducible
component of Cont≥m(Z) having codimension N , then C is also an irreducible compo-

nent of Cont≥(m−1)(Z). This implies that there is a component C of Cont≥m(Z) for every
m ≥ m0. Hence C is a cylinder contained in L(Z), which contradicts the proposition. �

Remark 2.8. In general, if f : X → Y is a proper birational morphism of nonsingular
varieties, the image of a cylinder by f∞ is not necessarily a cylinder. However, one can
give a sufficient condition for this to hold (see Exercise 2.17 below). On the other hand,
for such f the closure of the image of a cylinder is always a cylinder (see Exercise 2.20
below).

The Birational Transformation Theorem, due to Kontsevich, deals with a proper
birational morphism f : X → Y between nonsingular varieties. The behavior of the
corresponding morphism f∞ is governed by the discrepancy of f . This is an effective
divisor on X denoted by KX/Y , defined as follows.

Let f be a proper birational morphism between nonsingular varieties of dimension n.
We have a morphism of sheaves f ∗ΩY → ΩX . This is generically an isomorphism, hence
we get an injective morphism of rank one locally free sheaves f ∗Ωn

Y → Ωn
X . This is given

by multiplying with the local equation of a unique effective divisor which isKX/Y . In other
words, if we choose local algebraic coordinates x1, . . . , xn around P ∈ X and y1, . . . , yn
around f(P ) ∈ Y , and if we write f ∗(yi) = fi(x1, . . . , xn) for some fi ∈ k[[x1, . . . , xn]],
then a local equation for KX/Y around P is given by the determinant of the Jacobian
matrix (∂fi/∂xj)i,j≤n.

We can state now the Birational Transformation Theorem, due to Kontsevich. Let
f : X → Y be a proper birational morphism between nonsingular varieties. For every m,
we denote by ψXm and πXm,p the projection morphisms corresponding to X, and similarly

for Y . If e is a nonnegative integer, we denote by C(e) the cylinder Conte(KX/Y ).

Theorem 2.9. With the above notation, let e be a nonnegative integer and let m be such
that m ≥ 2e.

i) For every γm, γ′m ∈ Xm such that γm lies in ψXm(C(e)) and fm(γm) = fm(γ′m), we
have πXm,m−e(γm) = πXm,m−e(γ

′
m).

ii) The induced map
ψXm(C(e))→ fm(ψXm(C(e)))

is piecewise trivial, with fiber Ae.

We will sketch the proof, following [Lo], in the next subsection.
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Remark 2.10. Note that in the context of the theorem, ψXm(C(e)) is a union of fibers
of fm. This is a consequence of i). In particular, f∞(C(e)) is a cylinder by Exercise 2.17
below.

Note that if Z is the image of the exceptional locus of f , then the theorem gives
decompositions

L(X) r L(f−1(Z)) =
∐
e∈N

C(e), L(Y ) r L(Z) =
∐
e∈N

f∞(C(e)).

Despite the fact that the maps
C(e) → f∞(C(e))

are bijective, the induced map at a finite level m ≥ 2e is piecewise trivial with fiber Ae.

Example 2.11. Suppose that f : X → A2 is the chart of the blowing-up of the origin
corresponding to φ : k[x, y] → k[u, v], with φ(x) = u and φ(y) = uv. Consider an m-jet
γ of X corresponding to u → α(t) and v → β(t). The order e of γ along KX/A2 is the
order of α(t), and we assume that m ≥ 2e. The image δ of γ corresponds to x → α(t),
y → α(t)β(t).

Let us determine the fiber f−1
m (δ). It consists of arcs γ′ = (α′(t), β′(t) with (α′, α′β′) =

(α, αβ). Equivalently, α′ = α and teβ = teβ′. It follows that if we write β =
∑m

j=0 βjt
j

and β′ =
∑m

j=0 β
′
jt
j, the condition on β′ is that βj = β′j for j ≤ m − e. Since the β′j for

m− e+ 1 ≤ j ≤ m can be chosen arbitrarily, it follows that the fiber over δ is isomorphic
to Ae (note that in this case we could have taken m ≥ e).

Remark 2.12. Denef and Loeser proved in [DL] a generalization of Theorem 2.9 to the
case when Y is possibly singular. The role of KX/Y is then played by the scheme defined
by the ideal I, such that the image of

f ∗Ωn
Y → Ωn

X

is I ⊗ Ωn
X .

Remark 2.13. The Birational Transformation Theorem plays an important role in Mo-
tivic Integration. It translates in the Change of Variable Formula for motivic integrals
(see [Ve], and also the next section).

2.3. Complements.

Exercise 2.14. Let k be an uncountable algebraically closed field.

1) If f1, f2, . . . ∈ k[x1, . . . , xn] are nonzero polynomials, then there is a = (a1, . . . , an) ∈
kn such that fi(a) 6= 0 for every i.

2) Deduce that if Y is a scheme of finite type over k, and if Y1, Y2 . . . are closed
subsets of Y such that Y = ∪iYi, then there is m such that Y = Y1 ∪ . . . ∪ Ym.

3) Deduce that if Y is a scheme of finite type over k and if W1 ⊇ W2 ⊇ . . . are
nonempty constructible subsets of Y , then ∩iWi 6= ∅.

4) Suppose now that X is a nonsingular variety and C1 ⊇ C2 . . . are nonempty
cylinders in L(X). Show by induction on m that there are γm ∈ ∩i≥1ψm(Ci)
such that πm,m−1(γm) = γm−1 for every m. In particular (γm)m gives an element
γ ∈ ∩i≥1Ci.
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Exercise 2.15. Prove Proposition 2.6 as follows.

i) After choosing algebraic coordinates in a neighborhood of a point where Z 6= X,
reduce the assertion in the proposition to the following: if f ∈ k[[x1, . . . , xn]]
is nonzero, if m is a positive integer and if u1, . . . , un ∈ k[[t]], then there are
v1, . . . , vn ∈ k[[t]] such that f(u1 + tmv1, . . . , un + tmvn) 6= 0.

ii) Reduce the above assertion to the following: if g ∈ k[[t]][x1, . . . , xn] is nonzero,
then there are v1, . . . , vn ∈ tk[[t]] such that g(v1, . . . , vn) 6= 0.

iii) Prove this by induction on n, reducing it to the following statement: if h ∈ k[[t]][x]
is nonzero, then there is v ∈ tk[[t]] such that h(v) 6= 0.

Exercise 2.16. Show that if f : X → Y is a proper birational morphism between two
nonsingular varieties, then fm is surjective for every nonnegative integer m.

Exercise 2.17. Let f : X → Y be a proper birational morphism between nonsingular
varieties. Use the previous exercise to show that if S ⊆ Xm is a union of fibres of fm
and if C = (ψXm)−1(S), then f∞(C) = (ψYm)−1(fm(S)). In particular, the image of C is a
cylinder.

Exercise 2.18. Let f : X → Y be a proper birational morphism between nonsingular
varieties. We have seen in Proposition 2.1 that the complement of Im(f∞) is thin. Use
the previous exercise to show that, in fact, f∞ is surjective (note that this strengthens
the assertion in Exercise 2.16).

Exercise 2.19. With the notation in Theorem 2.9, show that if f is birational and if
C ⊆ C(e) is a cylinder, then its image f∞(C), too, is a cylinder.

Exercise 2.20. If f : X → Y is a proper birational morphism between nonsingular va-
rieties and if C ⊆ L(X) is a cylinder, then the closure f∞(C) of its image is again a
cylinder.

Exercise 2.21. Let Y be a nonsingular variety, and X ⊂ Y a nonsingular closed sub-

variety of codimension r. Show that if Ỹ → Y is the blowing-up of Y along X, with
exceptional divisor E, then K

eY /Y = (r − 1)E.

We discuss now the proof of Theorem 2.9 following [Lo]. Let f : X → Y be a proper
birational morphism between nonsingular varieties.

Exercise 2.22. Let γm ∈ Xm vanishing along KX/Y with order e, where e ≤ m. If γm
lies over x ∈ X, we may consider on k[t]/(tm+1) the structure of OX.x-module induced by
γ. Show that if we consider the canonical morphism

ΩY,f(x) ⊗k k[t]/(tm+1)→ ΩX,x ⊗k k[t]/(tm+1),

then both modules are isomorphic to (k[t]/(tm+1))⊕n such that the morphism is given by
a diagonal matrix with entries ta1 , . . . , tan for some nonnegative integers a1, . . . , an such
that

∑n
i=1 ai = e.

Exercise 2.23. Let γ, γ′ ∈ L(X) and write γm = ψXm(γ) and γ′m = ψXm(γ′). Show that
if γ ∈ C(e) with m ≥ 2e and if fm(γm) = fm(γ′m), then πm,m−e(γm) = πm,m−e(γ

′
m), as

follows.
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i) Note that it is enough to construct γ̃ ∈ L(X) such that ψXm−e(γ̃) = ψXm−e(γ) and
f∞(γ′) = f∞(γ̃). Therefore it is enough to construct by induction on p ≥ m + 1
an element δp ∈ Xp such that

πp,p−e−1(δp) = πp−1,p−e−1(δp−1) and fp(δp) = fp(ψ
X
p (γ′))

(where δm = γm).
ii) For the induction step, suppose that αp+1 ∈ Xp+1 is an arbitrary lifting of δp. Let

πm(γm) = x and y = f(x). Show that the set of those α′p+1 ∈ Xp+1 such that

πXp+1,p−e(α
′
p+1) = πXp,p−e(δp)

is in bijection with Derk(OX,x, (tp−e+1)/(tp+2)), where we consider k[t]/(tp+2) as a
module over OX,x via αp+1.

iii) Note that fp+1(αp+1) is a lifting of fp(δp). The other lifting fp+1(ψ
X
p+1(γ

′)) cor-

responds to a derivation D ∈ Derk(OY,y, (tp−e+1)/(tp+2)). Moreover, we can find
δp+1 as required by induction if and only if D lies in the image of

u : Derk(OX,x, (tp−e+1)/(tp+2))→ Derk(OY,y, (tp−e+1)/(tp+2)).

iv) Show that by the induction hypothesis on δp, the class ofD in Derk(OY,y, (tp−e+1)/(tp+2)
lies in the image of

v : Derk(OX,x, (tp−e+1)/(tp+1))→ Derk(OY,y, (tp−e+1)/(tp+1)).

v) Use the previous exercise to show that the cokernels of u and v are naturally
isomorphic, so D lies in the image of u.

Note that the above exercise proves i) in Theorem 2.9.

Exercise 2.24. Let γm ∈ Xm be an m-jet vanishing with order e along KX/Y , where
m ≥ 2e. Suppose that γm lies over x ∈ X.

i) Show that if we consider on k[t]/(tm+1) the OX,x-module structure given by γm,
then we have an isomorphism

f−1
m (fm(γm)) ' Ker

(
Derk(OX,x, (tm−e+1)/(tm+1))→ Derk(OY,y, (tm−e+1)/(tm+1))

)
(use the fact that by the previous exercise, for every γ′m ∈ Xm such that fm(γm) =
fm(γ′m), the images of γm and γ′m in Xm−e coincide).

ii) Use Exercise 2.22 to deduce that we have an isomorphism f−1
m (fm(γm)) ' Ae.

Exercise 2.25. Use the approach in the previous exercise to prove ii) in Theorem 2.9.

3. Applications of spaces of arcs

In this section we describe some applications of the Birational Transformation The-
orem. We first give an application to the study of invariants of K-equivalent varieties. In
particular, we give Kontsevich’s theorem saying that two K-equivalent varieties have the
same Hodge numbers. We next apply Theorem 2.9 applications to singularities. We show
how an invariant of singularities, the log canonical threshold, that is defined in terms
of log resolutions (equivalently, using divisorial valuations) can be interpreted using the
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codimensions of certain cylinders in the space of arcs. In the last section we sketch the
construction of (Hodge realizations of) motivic integrals, and give some applications of
the interpretation of invariants of singularities in terms of spaces of arcs.

In this section we need resolutions of singularities. Therefore we assume that we
work over an algebraically closed field of characteristic zero.

3.1. K-equivalent varieties. Two nonsingular complete varieties X and X ′ are K-
equivalent if there is a nonsingular variety Y and proper birational morphisms f : Y → X
and f ′ : Y → X ′ such that KY/X = KY/X′ .

Remark 3.1. Note that two K-equivalent varieties are in particular birational. On the
other hand, if two varieties X and X ′ as above are birational, then by resolving the
birational map (i.e. by taking a resolution of singularities of its graph), we can always
find a nonsingular variety Z and proper, birational morphisms g : Z → X and g′ : Z → X ′.

Remark 3.2. In fact, in the definition of K-equivalence one can put the weaker condition
that KY/X is linearly equivalent with KY/X′ (or even that KY/X and KY/X′ are numerically
equivalent), see Exercise 3.10 below. In particular, if X and X ′ are birational Calabi-Yau
varieties (by which we mean that Ωn

X ' OX and similarly for X ′), then X and X ′ are
K-equivalent.

Remark 3.3. The existence of non-isomorphic, but K-equivalent varieties is a phenome-
non that appears in dimension at least three. Suppose, for example thatX is a nonsingular
complete threefold and that C ' P1 is a curve in X with NC/X ' OC(−1)⊕OC(−1). If
π : W = BlCX → X is the blowing-up of X along C, with exceptional divisor E, then
E ' P1×P1, with π|E corresponding to the first projection. One can show that the second
projection can be extended to a morphism W → X ′ that is again an isomorphism outside
E and such that X ′ is again nonsingular. Moreover, the image of E in X ′ is a curve
C ′ ' P1 such that NC′/X′ ' OC′(1)⊕OC′(1). The birational transformation X 99K X ′ is
a standard flop. Since KW/X = E = KW/X′ , we see that X and X ′ are equivalent.

Note that in this example we have decompositions X = (X r C)
∐
C and X ′ =

(X ′rC ′)
∐
C ′ such that XrC ' X ′rC ′ and C ' C ′. Whenever we deal with invariants

that are additive with respect to such locally closed decompositions, we can conclude that
X and X ′ have the same invariants. However, it is not known whether for two arbitrary
K-equivalent varieties X and X ′ there are decompositions

X = X1

∐
. . .

∐
Xr, X

′ = X ′
1

∐
. . .

∐
X ′
r,

where the Xi and the X ′
i are locally closed and Xi ' X ′

i for every i. However, the
Birational Transformation Theorem provides a decomposition with similar properties if
instead of considering the varieties themselves we consider instead the corresponding
spaces of arcs (however, this is an infinite decomposition, so one needs to develop a
suitable formalism).

As an example, we will prove the following theorem of Kontsevich [Kon].

Theorem 3.4. If Y and Y ′ are K-equivalent smooth projective varieties, then Y and Y ′

have the same Hodge numbers: hp,q(Y ) = hp,q(Y ′) for every p and q.
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Recall that if Y is a smooth projective variety, then hp,q(Y ) := dimkH
q(Y,Ωp

Y ).
These numbers can be put together in the Hodge polynomial

E(Y ;u, v) :=

dim(Y )∑
p,q=0

(−1)p+qhp,q(Y )upvq.

A fundamental property of this invariant is that it can be extended as an additive invariant
to all varieties over k. In other words, one can define for every variety Y a polynomial
E(Y ;u, v) ∈ Z[u, v] called the Hodge-Deligne polynomial of Y such that

1) If Y is smooth and projective, then this is the Hodge polynomial of Y .
2) If Z is a closed subvariety of X, then E(Y ) = E(Z) + E(Y r Z).

It is easy to see that if such a polynomial exists, then it is unique. In fact, it
can be computed by induction on dimension, by reducing first to the affine case, and
then compactifying to a projective variety and using resolution of singularities. This
computation also shows that the degree of E(X) in each of u and v is dim(X), and the
total degree is 2 dim(X). Existence over C was proved by Deligne [De] using the mixed
Hodge structure on the cohomology with compact support. A more elementary proof,
valid over an arbitrary field of characteristic zero, can be obtained using a theorem of
Bittner [Bi].

Another property of the Hodge-Deligne polynomial is that E(X×Y ) = E(X) ·E(Y )
for every varieties X and Y (one can reduce this to the case of smooth projective varieties,
when it follows from definition and the Künneth Formula). Together with additivity, this
implies that if X → Y is piecewise trivial with fiber Z, then E(X) = E(Y ) · E(Z).

Example 3.5. Since the Hodge polynomial of P1 is 1 + uv, it follows that E(A1) =
(1 + uv)− 1 = uv. Therefore E(An) = (uv)n.

Suppose now that X is a nonsingular variety of dimension n and C = (ψXm)−1(S) is
a locally closed cylinder in L(X). If we put E(C;u, v) := E(S;u, v) · (uv)−mn, then this is
well-defined since all projections πm+1,m are locally trivial with fiber An. It is clear that E
is additive in the obvious sense also on cylinders. Note that. for example, E(L(X);u, v) =
E(X;u, v). If C is an arbitrary cylinder, we may define E(C) by additivity, by writing
C as a disjoint union of locally closed cylinders. It is clear that E(C;u, v) is a Laurent
polynomial of degree − codim(C) in each of u and v.

Proof of Theorem 3.4. Note first that after suitably extending the ground field, we may
assume that it is uncountable, hence we may apply the results in the previous section.
Suppose that f : X → Y is a proper birational morphism of nonsingular varieties. Recall
that if we denote by Z the image of the exceptional locus, then the Birational Transfor-
mation Theorem, gives decompositions

L(X) r L(f−1(Z)) =
∐
e∈N

C(e), L(Y ) r L(Z) =
∐
e∈N

f∞(C(e)).
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We remark that by the Birational Transformation Theorem, we have

E(C(e);u, v) = E(f∞(C(e));u, v) · (uv)e

for every e ∈ N. We claim that

E(X) =
∑
e∈N

E(C(e)), E(Y ) =
∑
e∈N

E(f∞(C(e))),

where the sums are in the ring of Laurent power series in u−1 and v−1. Note that together
with the previous remark, this implies the assertion of the theorem by the definition of
K-equivalence. On the other hand, the claim follows from the following more general
statement. �

Lemma 3.6. Suppose that X is a nonsingular variety and C is a cylinder in L(X). If
C1, C2, . . . are disjoint cylinders contained in C such that C r (C1

∐
C2 . . .) is thin, then

E(C) =
∑

m∈NE(Cm).

Proof. Let Z be a proper closed subset of X such that C r
∐

m≥1Cm ⊆ L(Z). We need
to show that for every N , there is m0 such that

E(C)−
m∑
i=1

E(Ci) = E(C r (C1

∐
. . .

∐
Cm))

has degree ≤ −N in both u and v.

By Corollary 2.7 we know that if p� 0, then codim Cont≥p(Z) ≥ N . On the other
hand, we have

C ⊆ Cont≥p(Z) ∪ C1 ∪ C2 ∪ . . . ,
hence by Lemma 2.5 there is m0 such that

C ⊆ Cont≥p(Z) ∪ C1 ∪ . . . ∪ Cm0 .

In particular, for every m ≥ m0 we have C r (C1

∐
. . .

∐
Cm) ⊆ Cont≥p(Z). Therefore

E(C r (C1

∐
. . .

∐
Cm)) has degree in each of u and v bounded above by

− codim (C r (C1 ∪ . . . ∪ Cm)) ≤ − codim Cont≥p(Z) ≤ −N,
which completes the proof. �

3.2. Singularities and spaces of arcs. In birational geometry singularities are mea-
sured via divisorial valuations. We will be interested in singularities of pairs (X, Y ), where
Y is a proper subscheme of X, and for simplicity we assume that X is a nonsingular va-
riety. In order to define invariants, we will consider various divisors over X : these are
prime divisors E ⊂ X ′, where f : X ′ → X is a birational morphism and X ′ is nonsingular.
Every such divisor E gives a discrete valuation ordE of the function field K(X ′) = K(X),
corresponding to the DVR OX′,E. We will identify two divisors over X if they give the
same valuation of K(X).

Let E be a divisor over X. If Y is a closed subscheme of X, then we define ordE(Y )
as follows: we may assume that E is a divisor on X ′ and that the scheme-theoretic inverse
image π−1(Z) is a divisor. Then ordE(Z) is the coefficient of E in f−1(Z). We also define
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ordE(K−/X) as the coefficient of E in KX′/X . Note that both ordE(Y ) and ordE(K−/X)
do not depend on the particular X ′ we have chosen.

The way to obtain invariants is to look at every divisor E over X and compare
ordE(Y ) with ordE(K−/X). We will restrict in what follows to one invariant of the pair,
its log canonical threshold. This is defined by

lc(X, Y ) := inf
E

1 + ordE(K−/X)

ordE(Y )
.

It is a general principle that such invariants of singularities can be computed on
certain kind of resolutions. In the case of the log canonical threshold this means the
following. let f : X ′ → X be a log resolution of the pair (X, Y ). This means that f is
proper and birational, X ′ is nonsingular, and f−1(Y ) is a divisor such that f−1(Y )+KX′/X

is a divisor with simple normal crossings (i.e. we can find algebraic local coordinates
x1, . . . , xn on X ′ such that the corresponding divisor is defined by an equation of the form
xa1

1 · · ·xar
r ). One can show that in the definition of the log canonical threshold it is enough

to consider only divisors that lie on X ′. In other words, if we write

(3) f−1(Y ) =
s∑
i=1

aiEi, and KX′/X =
s∑
i=1

kiEi,

then lc(X, Y ) = mini
ki+1
ai

.

The importance of the log canonical threshold in birational geometry comes from
the fact that it gives the largest q > 0 such that the pair (X, q · Y ) is log canonical (log
canonical pairs–when Y is a divisor–form the largest class of pairs for which the Minimal
Model Program is expected to work). For other points of view on log canonical thresholds
see [Kol].

We will describe now an interpretation of the log canonical threshold of (X,Y ) in
terms of the codimensions of the contact loci of Y . In fact, we will first use the Birational
Transformation Theorem to give a formula for the codimensions of the contact loci of Y
in terms of a log resolution of singularities.

Suppose that f is a log resolution of (X, Y ) and suppose that the ai and the ki are
as in (3). There is such a log resolution that is an isomorphism over X r Y , i.e. ai > 0
for every i. For simplicity, we assume that f has this property.

Theorem 3.7. ([ELM]) With the above notation, for every nonnegative integer m we
have

codim(Contm(Y )) = min
ν

s∑
i=1

(ki + 1)νi,

where the minimum is over all ν = (νi) ∈ Ns such that
∑s

i=1 aiνi = m and ∩νi≥1Ei 6= ∅.

Proof. After possibly extending the ground field, we may assume that it is uncountable.
Note that

(4) f−1(Contm(Y )) = Contm(f−1(Y )) =
∐
ν

Contν(E),
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where Contν(E) = ∩si=1Contνi(Ei). Here ν ∈ Ns is such that
∑s

i=1 aiνi = m. Note that
since every ai > 0, this is a finite set.

The divisor
∑

iEi has simple normal crossings, hence in order to compute the codi-
mension of Contν(E) we may take an étale morphism to An to reduce to the case when
the Ei are coordinate hyperplanes in an affine space. Using this one sees that Contν(E)
is nonempty if and only if ∩νi≥1Ei 6= ∅, and in this case codim(Contν(E)) =

∑s
i=1 νi.

On the other hand, note that Contν(E) ⊆ Conte(KX′/X), where e =
∑s

i=1 kiνi.
If p � 0, it follows from Theorem 2.9 i) that ψXp (Contν(E)) is a union of fibers of fp.
Moreover, it follows from part ii) of the same result that

codim(f∞Contν(E)) =
s∑
i=1

(ki + 1)νi.

The decomposition (4) gives a decomposition

Contm(Y ) = f∞(Contm(f−1(Y )) =
∐
ν

f∞(Contν(E))

(recall that by Proposition 2.1, f∞ is bijective over Contm(Y )). Therefore

codim(Contm(Y )) = min
ν
f∞ (Contν(E)) ,

and we get the formula in the theorem. �

Corollary 3.8. If Y is a proper closed subscheme of the nonsingular variety X, then

(5) lc(X, Y ) := dim(X)−max
m

dim Ym
m+ 1

.

Proof. It is easy to see that the formula in the theorem implies

codim Cont≥m(Y ) = min
ν

∑
i

(ki + 1)νi,

where the minimum is over those ν = (νi) ∈ Ns such that
∑

i aiνi ≥ m and ∩νi≥1Ei 6= ∅.
For every i we have ki + 1 ≥ lc(X, Y ) · ai, hence

m · lc(X, Y ) ≤ codim Cont≥m(Y ) = codim(Ym−1, Xm−1) = m · dim(X)− dim(Ym−1).

Suppose now that i is such that ki+1
ai

= lc(X, Y ). If we take νj = 0 for j 6= i and
νi = ` ≥ 1, we see that

codim Cont≥ai`(Y ) ≤ ai` · lc(X, Y ),

and therefore dim(Ym−1) ≥ m(dim(X) − lc(X, Y )) whenever m is divisible by ai. This
completes the proof. �
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3.3. Complements.

Exercise 3.9. Show that ifX andX ′ areK-equivalent, then for every nonsingular variety
Z and proper birational morphisms Z → X and Z → X ′ we have KZ/X = KZ/X′ .

Exercise 3.10. Recall that the Negativity Lemma says that if f : X → Y is a proper
birational morphism of nonsingular varieties and if −D is a nef divisor on X, then D is
effective if and only if f∗D is effective. Use this to show that if Y → X and Y → X ′

are proper birational morphisms of nonsingular varieties such that KY/X and KY/X′ are
numerically equivalent, then KY/X = KY/X′ .

We sketch now the basics of motivic integration. For simplicity, we will discuss
only the Hodge realization of motivic integration, that was introduced in [Ba1], following
[Kon]. Suppose that X is a nonsingular variety and let F : L(X)→ Z∪{∞}. We assume
that F−1(m) is a cylinder for every integer m, and that F−1(∞) is thin. Consider the
sum

(6)
∑
m∈Z

E(F−1(m)) · (uv)−m.

As in §1, we work in the Laurent power series ring in u−1 and v−1, hence convergence
means that the degree with respect to both u and v goes to −∞. If the sum (6) is
convergent, then we say that f is integrable. The sum is denoted by

∫
L(X)

(uv)−f and it

is called the (Hodge realization of the) motivic integral of f . In fact, one can make the
definition for slightly more general functions F (see [Ba1]), but the present one covers
essentially all applications.

The fundamental result of the theory is the following consequence of the Birational
Transformation Theorem.

Exercise 3.11 (Change of Variable Formula). Let f : X ′ → X be a proper birational
morphism between nonsingular varieties. Suppose that F : L(X)→ Z∪{∞} is a function
such that F−1(m) is a cylinder for every integer m and F−1(∞) is thin. Show that F is
integrable if and only if F ◦ f∞ + ordKX′/X

is integrable, and in this case∫
L(X)

(uv)−F =

∫
L(X′)

(uv
−(F◦f∞+ordKX′/X

)
.

The basic examples of functions to integrate are obtained from functions of the form
ordY for a proper closed subscheme Y of X (note that this function satisfies the condition
on the level sets for the definition of motivic integrals). Suppose that f : X ′ → X is a log
resolution of (X, Y ). Note that we have

ordY ◦f∞ = ordf−1(Y ) .

Using the Change of Variable Formula, we get∫
L(X)

(uv)− ordY =

∫
L(X′)

(uv)
−(ordf−1(Y ) + ordKX′/X

)
.

On the other hand, functions as the one on the right-hand side of the above formula can
be explicitly integrated, as the following exercise shows.
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Exercise 3.12. Let X be a nonsingular variety and D =
∑s

i=1 aiDi an effective divisor
on X with simple normal crossings. Show that ordD is integrable, and∫

L(X)

(uv)− ordD =
∑

J⊆{1,...,s}

E(D◦
J ;u, v) ·

∏
i∈J

uv − 1

(uv)ai − 1
,

hence it is a rational function. Here we put D◦
J = ∩i∈JDi r ∪j 6∈JDj.

Remark 3.13. In the above construction, the important thing is that the Hodge-Deligne
polynomial is additive. A similar construction can be done starting from any other ad-
ditive invariant. In fact, the motivic integral is constructed with respect to the universal
such invariant, taking value in the Grothendieck group of varieties over k. However, in
order to make sense of sums like the one in (6) we need to complete the corresponding
value ring (see, for example, [Ve] for details).

One can use the above formalism in order to define stringy invariants for singular
varieties. We sketch here the definition of stringy Hodge numbers, following [Ba1].

Suppose that X is a normal Gorenstein variety of dimension n. Since X is normal,
if Xreg is the smooth part of X, then its complement in X has codimension at least two.
Therefore there is on X a Weil divisor KX , unique up to linear equivalence such that
O(KX)|Xreg ' Ωn

Xreg
. One can show that since X is Cohen-Macaulay, the sheaf O(KX) is

isomorphic to the dualizing sheaf ωX of X. Since X is, in fact, Gorenstein, it follows that
KX is a Cartier divisor.

Suppose now that π : X ′ → X is a resolution of singularities of X such that the
exceptional locus of π is a divisor with simple normal crossings. One can show that there
is a unique divisor KX′/X supported on the exceptional locus of π such that KX′/X is
linearly equivalent with KX′ − π∗KX . As in Lecture 2, this is called the discrepancy of
f . Unlike the case when X is nonsingular, this is not necessarily an effective divisor.
The condition that KX′/X is effective means that X has canonical singularities (one can
show that this condition does not depend on the choice of the resolution). For more on
canonical singularities, and for singularities of pairs, in general, see [Kol].

Suppose now that X is a Gorenstein variety with canonical singularities. We define
the stringy E-function of X, as follows. If π : X ′ → X is a resolution of X, let Est(X) :=∫
L(X′)

(uv)
− ordKX′/X .

Exercise 3.14. i) Show that if π′ : X ′′ → X ′ is proper and birational such that π◦π′
is again a resolution of X, then

KX′′/X = KX′′/X′ + (π′)∗(KX′/X).

ii) Deduce that the stringy E-function of X does not depend on the choice of resolu-
tion.

iii) One says that a resolution of singularities π : X ′ → X is crepant if KX′/X = 0.
Show that if X has a crepant resolution X ′, then Est(X;u, v) = E(X;u, v).

Remark 3.15. If one works with rational powers of u and v, then one can defined the
stringy E-function in the case when X is only Q-Gorenstein and having log terminal
singularities.
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Remark 3.16. Note that Est(X;u, v) is not necessarily a polynomial, but only a rational
function in u and v.

Exercise 3.17. LetX ⊆ A4 be defined by the cone over a smooth quadric in P3. Compute
Est(X;u, v).

We give now some applications of the description of the log canonical threshold in
terms of the dimensions of jet schemes, Recall that a monomial ideal a in the polynomial
ring k[x1, . . . , xn] is an ideal generated by monomials. If u = (u1, . . . , un) ∈ Nn, we write
xu for the monomial xu1

1 . . . xun
n . The Newton polyhedron of the monomial ideal a is the

convex hull Pa of the set
{u ∈ Nn | xu ∈ a}.

The polar polyhedron of Pa is

P ◦
a = {v ∈ Rn |

∑
i

uivi ≥ 1 for every u ∈ Pa}.

It is a standard fact of convex geometry that (P ◦
a )◦ = Pa.

Exercise 3.18. Let a be a nonzero monomial ideal in k[x1, . . . , xn].

i) For every a = (ai) ∈ Nn, put Cont≥a(x) = ∩iCont≥ai(xi). Show that for every
m ∈ N we have

Cont≥m(a) =
⋃
a∈Nn

Cont≥a(x),

where the union is over those a ∈ Nn ∩ (m+ 1)Pa.
ii) Deduce that lc(An, V (a)) is that positive number c such that

(
1
c
, . . . , 1

c

)
lies on the

boundary of Pa

Exercise 3.19. Let X ⊆ Pn be a smooth hypersurface of degree d and let Y ⊆ An+1 be
the cone over X.

i) Show that if X is nonsingular, then

lc(An+1, Y ) = min{1, (n+ 1)/d}.
ii) Show that if dim Xsing = r, then

lc(An+1, Y ) ≥ min{1, (n− r)/d}.

Exercise 3.20. Show that if X ⊆ A2 is defined by x2 − y3 = 0, then lc(A2, X) = 5
6
.

Exercise 3.21. Let X be a scheme of finite type over k.

i) Show that for every m, there is a section sm : X → Xm of the canonical projection
πm : Xm → X, that takes every point x to the constant m-jet at x.

ii) Show that we have an action of the torus k∗ on Xm such that the action of λ ∈ k∗
is induced by the ring morphism k[t]/(tm+1)→ k[t]/(tm+1) that takes t to λt.

iii) Show that the fixed points of this action are given by sm(X).
iv) Deduce that for every irreducible component W of Xm, if x ∈ π(W ), then sm(x) ∈

W .
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There is a local version of the log canonical threshold. Suppose that X is a smooth
variety and x ∈ X. If Y is a closed subscheme of X containing x, then

lcx(X, Y ) := max
U
{lc(U, Y |U)}

where the maximum is over all open neighborhoods U of x in X (show that this is indeed
a maximum).

Exercise 3.22. Prove the following version of Inversion of adjunction: if H is a smooth
divisor in the smooth variety X, and if Y is a closed subscheme not containing H, then
for every x ∈ Y ∩H we have

lcx(X, Y ) ≥ lcx(H, Y |H).

Exercise 3.23. Let X be a smooth variety, Y a closed subscheme of X and x a point on
Y . Show that if πm : Xm → X is the canonical projection, then

lcx(X, Y ) = dim(X)− sup
m

dim (πm)−1(x)

m+ 1
.
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