Problem session 10

Problem 1. Let G(r, n+1) be the Grassmannian of (r-1)-dimensional linear spaces in \mathbb{P}^n .

1) Show that the incidence correspondence

$$\Gamma := \{ (p, L) \in \mathbb{P}^n \times G(r, n+1) \mid p \in L \}$$

is a closed subset of $\mathbb{P}^n \times G(r, n+1)$.

- 2) Use this to show that if X is a closed subset of \mathbb{P}^n , then the set of (r-1)-dimensional linear subspaces of \mathbb{P}^n that intersect X non-trivially is a closed subset of G(r, n+1).
- 3) Let $p: \Gamma \to \mathbb{P}^n$ and $q: \Gamma \to G(r, n+1)$ be the morphisms induced by the two projections. Show that \mathbb{P}^n can be covered by open subsets U_i , such that $p^{-1}(U_i) \simeq U_i \times G(r-1,n)$ (over U_i). Similarly, G(r,n+1) can be covered by open subsets V_i , such that $q^{-1}(V_i) \simeq \mathbb{P}^{r-1} \times V_i$ (over V_i).
- 4) In particular, deduce that the two maps p and q are open.

Problem 2. Let X and Y be two disjoint closed subsets of \mathbb{P}^n . The *join* of X and Y is the union J(X,Y) of all lines \overline{pq} in \mathbb{P}^n , where $p \in X$ and $q \in Y$. Show that J(X,Y) is a closed subset of \mathbb{P}^n .

Problem 3. Let X be a closed subset of \mathbb{P}^n . The Fano variety of lines on X consists of the lines $\ell \in G(2, n+1)$ such that $\ell \subseteq X$. Show that this is a closed subset of G(2, n+1). Can you describe the Fano variety of lines for the quadric xy - zw = 0 in \mathbb{P}^3 ?

Problem 4. Let V be an n-dimensional vector space. A complete flag in V is a sequence of vector subspaces of V

$$V_1 \subset \cdots \subset V_{n-1} \subset V_n = V$$
,

with $\dim_k(V_i) = i$. Show that there is a closed subset of $\prod_{i=1}^n G(i, V)$ that parametrizes the complete flags in V. This is the (complete) flag variety $\mathrm{Fl}(V)$ of V.