Problem session 12

Let X = Specm(k[S]) be the n.n.n. affine toric variety corresponding to the (finitely generated, integral) monoid S. Let M be the finitely generated free abelian group such that S is a submonoid of M and S generates M as a group.

We have seen in class that we have a bijection between T-invariant irreducible closed subsets of X and faces of S (these are submonoids $F \subseteq S$ such that if for $u, v \in S$ we have $u + v \in F$, then $u, v \in F$), such that Y corresponds to F if $I(Y) = \bigoplus_{u \in S \setminus F} k\chi^u$.

Problem 1. Show that if $Y \subseteq X$ is as above, then Y itself has a natural structure of n.n.n. affine toric variety, as follows (moreover, by taking the torus in each such Y, we recover precisely all the orbits of the action of T on X).

- i) Show that if F corresponds to Y as above, then we have a canonical isomorphism $\mathcal{O}(Y) \simeq k[F]$.
- ii) Let $T_Y := \operatorname{Specm}(M_Y)$, where $M_Y \subseteq M$ is the subgroup generated by F. Show that we have an open immersion $T_Y \hookrightarrow Y$ that makes Y a n.n.n. affine toric variety.
- iii) Denote by O_Y the image of the torus T_Y in Y. Show that O_Y is an orbit of the action of T on X.
- iv) Show that the map that takes Y to O_Y induces a bijection between the T-invariant irreducible closed subsets of X and the orbits of the T-action on X.

Problem 2. Let S be a finitely generated, integral monoid.

- i) Show that if S is generated (as a monoid) by u_1, \ldots, u_r , then every face F of S is generated by those u_i that lie in F.
- ii) Deduce that every n.n.n. affine toric variety has only finitely many orbits.

Problem 3. Let M and M' be two finitely generated free abelian groups, and $T = \operatorname{Specm}(k[M])$ and $T' = \operatorname{Specm}(k[M'])$ the corresponding tori. Show that there is a natural bijection

$$\operatorname{Hom}_{\operatorname{gp}}(M, M') \simeq \operatorname{Hom}_{\operatorname{alg-gp}}(T', T).$$

Problem 4. Let X and Y be n.n.n. affine toric varieties, and $T_X \subseteq X$ and $T_Y \subseteq Y$ the corresponding tori. A morphism of toric varieties $f: X \to Y$ is a morphism of algebraic varieties such that it induces a morphism of algebraic groups $g: T_X \to T_Y$.

i) Show that in this case f is compatible with the group actions, i.e.

$$f(\lambda \cdot u) = g(\lambda) \cdot f(u)$$

for every $\lambda \in T_X$ and every $u \in X$.

ii) Show that the correspondence $S \to \operatorname{Specm}(k[S])$ defines an anti-equivalence of categories between the category of finitely generated integral monoids and that of n.n.n. affine toric varieties.