Problem session 2

Problem 1. For m and $n \geq 1$, let us identify \mathbb{A}^{mn} with the set of all matrices $B \in M_{m,n}(k)$. Show that the set

$$M_{m,n}^r(k) := \{ B \in M_{m,n}(k) \mid rk(B) \le r \}$$

is an algebraic subset of $M_{m,n}(k)$.

Problem 2. Consider the set Z consisting of those $(a,b,c,d) \in \mathbb{A}^4$ for which the rank of

 $\begin{pmatrix} a & b & c \\ b & c & d \end{pmatrix}$

is ≤ 1 . Show that Z is an irreducible closed algebraic subset of \mathbb{A}^4 , and determine its ideal.

Problem 3. Show that a nonempty topological space X is irreducible if and only if for every two non-empty open subsets U and V, the intersection $U \cap V$ is nonempty. Deduce that an irreducible closed algebraic subset of \mathbb{A}^n that is not a point, is not Haussdorff.

Problem 4. Is \mathbb{C}^n with the usual Euclidean topology irreducible?

Problem 5. Show that if X is a Noetherian topological space, and if Y is a subset of X (with the induced topology), then Y is Noetherian.