Problem session 9

We will describe the Grassmannian as an algebraic variety. By definition, the Grassmannian G(r,n) is the set of r-dimensional linear subspaces in k^n . When we don't want to make reference to a fixed basis, and we talk about the set of r-dimensional linear subspaces of a vector space V, we write G(r,V). Note that we can alternatively think of G(r,n) as the set of (r-1)-dimensional linear subspaces of \mathbb{P}^{n-1} .

If W is a k-vector space, then we use the notation $\mathbb{P}(W)$ for the projective space of lines through the origin in W. Of course, after the choice of a basis e_1, \ldots, e_n in W, this becomes isomorphic to \mathbb{P}^{n-1} .

Problem 1. We first describe the Grassmannian as an algebraic variety via its *Plücker embedding* in a projective space, as follows.

- i) Show that there is an injective map $G(r, V) \to \mathbb{P}(\wedge^r V)$ that takes the subspace U of V to $\wedge^r U \subset \wedge^r V$.
- ii) Show that this identifies G(r, V) with the set of decomposable vectors in $\mathbb{P}(\wedge^r V)$, that is with (classes of) nonzero vectors $v \in \wedge^r V$ that can be written as $v_1 \wedge \cdots \wedge v_r$ for some $v_1, \ldots, v_r \in V$.
- iii) Show that $v \in \wedge^r V$ is divisible by $v_1 \in V$ (that is, one can write $v = v_1 \wedge w$ for some $w \in \wedge^{r-1} V$) if and only if $v_1 \wedge v = 0$ in $\wedge^{r+1} V$. Deduce that a nonzero vector $v \in \wedge^r V$ lies over the image of G(r, V) if and only if there is a vector subspace $W \subseteq V$ of dimension $\geq r$ such that $w \wedge v = 0$ in $\wedge^{r+1} V$ for every $w \in W$.
- iv) Consider the linear map

$$\wedge^r V \to \operatorname{Hom}_k(V, \wedge^{r+1} V),$$

that takes v to the linear map $w \to w \land v$. Deduce from iii) that the cone over G(r,V) is the inverse image of the locus of maps $V \to \wedge^{r+1}V$ of rank $\leq d-r$. Deduce that $G(r,V) \subseteq \mathbb{P}(\wedge^r V)$ is a closed subset, cut out by degree (d-r+1) homogeneous polynomials, where $d=\dim(V)$. (Note: these polynomials do not generate the ideal of G(r,V). In fact, this ideal can be generated by quadrics).

v) Note that if r=1, then the Plücker embedding is simply the isomorphism $G(1,V)\simeq \mathbb{P}(V)$, as expected. Similarly, if r=d-1, then the Plücker embedding is again an isomorphism $G(d-1,V)\simeq \mathbb{P}(\wedge^{d-1}V)$. Note that using the isomorphism $\wedge^{d-1}V\simeq V^*$ induced by $\wedge^{d-1}V\otimes V\to \wedge^dV\simeq k$, this simply recovers the parametrization of the hyperplanes in V by $\mathbb{P}(V^*)$.

Problem 2. Show that as a set, G(r,d) can be identified to the set of $r \times d$ matrices of maximal rank with entries in k, modulo the left action by multiplication of the group $GL_r(k)$. Moreover, the Plücker embedding $G(r,d) \hookrightarrow \mathbb{P}^N$, where $N = \binom{d}{r} - 1$, is induced by the map that takes the matrix A to the tuple with entries given by the r-minors of the matrix A.

Problem 3. For every $1 \leq i_1 < \ldots < i_r \leq n$, consider the subset U_{i_1,\ldots,i_n} of G(r,d) corresponding to matrices whose r-minor on the columns i_1,\ldots,i_r is nonzero.

- i) Show that this is an open subset of G(r,d), isomorphic to $\mathbf{A}^{r(d-r)}$ (recall that the algebraic variety structure on G(r,d) has been defined via the Plücker embedding).
- ii) Show that such open subsets cover G(r,d), and every two of them intersect non-trivially. Deduce that G(r,d) is irreducible.