Midterm I review sheet: Math 412, Winter 2014

Principle of Mathematical Induction: Let $\{P(n)\}_{n\in\mathbb{N}}$ be a family of mathematical statements indexed by the natural numbers \mathbb{N} . If P(0) is true and P(k+1) is true whenever P(k) is true, then P(n) is true for all $n \in \mathbb{N}$.

Well-ordering axiom: Every non-empty subset of the set of non-negative integers contains a smallest element.

The Division algorithm: Let a and b be integers with b > 0. Then there exist unique integers q and r such that a = bq + r and $0 \le r < b$. (q is the **quotient** and r is the **remainder**.)

Definition: Let a and b be integers with $b \neq 0$, we say that b **divides** a, and write $b \mid a$ if a = bc for some integer c.

Definition: If a and b are integers, not both 0, then the **greatest common divisor** of a and b, written (a, b), is the largest integer which divides both a and b, i.e. d = (a, b) if

- (1) $d \mid a \text{ and } d \mid b$, and
- (2) if $c \mid a$ and $c \mid b$, then $c \leq d$.

Theorem 1.2: If a and b are integers, not both zero, then there exist integers u and v so that (a, b) = au + bv.

Corollary 1.3: If a and b are integers, not both zero, and d is a positive integer, then d = (a, b) if and only if

(1) $d \mid a \text{ and } d \mid b$, and

(2) if $c \mid a$ and $c \mid b$, then $c \mid d$.

Corollary 1.4: If $a \mid bc$ and (a, b) = 1, then $a \mid c$.

Definition: An integer p is **prime** if $p \neq 0, \pm 1$ and its only divisors are ± 1 and $\pm p$.

Theorem 1.5: Suppose that p is a integer with $p \neq 0, \pm 1$. Then p is prime if and only if whenever $p \mid bc$ then $p \mid b$ or $p \mid c$.

Corollary 1.6: If p is prime and $p \mid a_1 \cdots a_n$, then $p \mid a_i$ for some a_i .

Theorem 1.8: Every integer n, except $0, \pm 1$, can be written as a product of primes. Moreover, if

$$n = p_1 \cdots p_r = q_1 \cdots q_s$$

where each p_i and each q_j is prime, then r = s and, after re-ordering, $p_i = \pm q_i$ for all $i \in \{1, \ldots, r\}$. **Definition:** If $a, b, n \in \mathbb{Z}$ and n > 1, then we say a is **congruent to** b (modulo n), and write

 $a \equiv b \pmod{n}$, if $n \mid b - a$.

Theorem 2.1: If $a, b, c, n \in \mathbb{Z}$ and n > 1, then

(1)
$$a \equiv a \pmod{n}$$
,

- (2) if $a \equiv b \pmod{n}$, then $b \equiv a \pmod{n}$, and
- (3) if $a \equiv b \pmod{n}$ and $b \equiv c \pmod{n}$, then $a \equiv c \pmod{n}$.

Definition: If $a, n \in \mathbb{Z}$ and n > 1, then the **congruence class of** a **modulo** n is the set of all integers that are congruent to a modulo n, i.e.

$$[a] = \{ b \in \mathbb{Z} \mid b \equiv a (mod \ n) \}.$$

Theorem 2.3: $a \equiv c \pmod{n}$ if and only if [a] = [c].

Corollary 2.4: Two congruence classes modulo *n* are either disjoint or identical.

Corollary 2.5: Suppose that n > 1 is an integer and consider congruence classes modulo n. Then

- (1) If a is an integer and r is its remainder when divided by n, then [a] = [r].
- (2) There are exactly *n* congruence classes, namely $[0], [1], \ldots, [n-1]$.

Definition: If n > 1 is an integer, let $\mathbb{Z}_n = \{[0], [1], \ldots, [n-1]\}$ and define the operations $[a] \oplus [b] = [a \oplus b]$ and $[a] \odot [b] = [ab]$.

Definition: A ring is a non-empty set with two operations satisfying the following 8 axioms for all $a, b, c \in R$.

- (1) $a+b \in R$
- (2) a + (b + c) = (a + b) + c
- $(3) \ a+b=b+a$
- (4) There exists $0_R \in R$ so that $a + 0_R = a = 0_R + a$ for all $a \in R$.
- (5) For each $a \in R$, the equation $a + x = 0_R$ has a solution in R.
- (6) $ab \in R$
- (7) a(bc) = (ab)c
- (8) a(b+c) = ab + ac and (a+b)c = ac + bc.

Definitions: A commutative ring is a ring such that

(9)
$$ab = ba$$
 for all $a, b \in R$.

Definition: A ring with identity is a ring such that there exists $1_R \in R$ so that

(10) $a1_R = a = 1_R a$ for all $a \in R$.

Theorem 2.7: If n > 1 is an integer, then \mathbb{Z}_n is a commutative ring with identity.

Definition: If R and S are rings and $R \times S = \{(r, s) \mid r \in R, s \in S\}$ then we define two operations on $R \times S$ by (r, s) + (r', s') = (r+s, r'+s') and (r, s)(r', s') = (rr', ss') for all $(r, s), (r', s') \in R \times S$.

Theorem 3.1: If R and S are rings, then $R \times S$ is a ring. If both R and S are commutative, then $R \times S$ is commutative and if both R and S have identities then $(1_R, 1_S)$ is an identity for $R \times S$.

Theorem 3.3: If $a \in R$ and R is a ring, then $a + x = 0_R$ has a unique solution.

Definition: If $a \in R$, we define -a to be the unique solution of $a + x = 0_R$ and, if $a, b \in R$, we define a - b = a + (-b).

Theorem 3.4: If $a, b, c \in R$, R is a ring and a + b = a + c, then b = c.

Theorem 3.5: If $a, b \in R$ and R is a ring, then

- (1) $a0_R = 0_R = 0_R a$. In particular, $0_R 0_R = 0_R$.
- (2) a(-b) = -ab = (-a)b
- (3) -(-a) = a
- (4) -(a+b) = (-a) + (-b)
- (5) -(a-b) = -a+b
- (6) (-a)(-b) = ab
- (7) If R has an identity, $(-1_R)a = -a$.

Definition: A non-empty subset S of a ring R is a **subring** if S is a ring (with the restrictions of the operations of R.)

Theorem 3.2: Suppose that R is a ring and S is a subset of R, then S is a subring of R if the following four conditions hold:

- (1) S is closed under addition (i.e. if $a, b \in S$, then $a + b \in S$), and
- (2) S is closed under multiplication (i.e. if $a, b \in S$, then $ab \in S$).
- (3) $0_R \in S$, and
- (4) If $a \in S$, then $a + x = 0_R$ has a solution in S.

Theorem: 3.6: A non-empty subset S of a ring R is a subring of R if

- (1) S is closed under subtraction (i.e. if $a, b \in S$, then $a b \in S$), and
- (2) S is closed under multiplication (i.e. if $a, b \in S$, then $ab \in S$).

Definition: A commutative ring R with identity $1_R \neq 0_R$ is an **integral domain** if (11) If $ac = 0_R$ in R, then $a = 0_R$ or $c = 0_R$.

Definition: A commutative ring R with identity $1_R \neq 0_R$ is a field if (12) If $a \neq 0_R$ in R, then the equation $ax = 1_R$ has a solution in R.

Theorem 2.8: If p > 1 is an integer, then the following are equivalent:

- (1) p is prime.
- (2) \mathbb{Z}_p is an integral domain.
- (3) \mathbb{Z}_p is a field.

Definition: A non-zero element *a* of a ring *R* is a **zero divisor** if there exists a non-zero element *c* of *R* so that $ac = 0_R$ or $ca = 0_R$.

Definition: An element a of a ring R is a **unit** if there exists $u \in R$ so that $au = 1_R = au$, in which case we write $u = a^{-1}$.

Theorem 2.9: If n > 1 is an integer, then [a] is a unit in \mathbb{Z}_n if and only if (a, n) = 1.

Theorem 3.7: If R is an integral domain, $a \neq 0_R$ and ab = ac then b = c.

Theorem 3.8: Every field is an integral domain.

Theorem 3.9: Every finite integral domain is a field.

Definition: A function $f : R \to S$ between rings is an **isomorphism** if

- (1) f is injective,
- (2) f is surjective, and
- (3) f(a+b) = f(a) + f(b) and f(ab) = f(a)f(b) for all $a, b \in \mathbb{R}$.

Definition: A function $f : R \to S$ between rings is a **homomorphism** if f(a+b) = f(a) + f(b)and f(ab) = f(a)f(b) for all $a, b \in R$.

Theorem 3.10: If $f : R \to S$ is an homomorphism of rings, then

- (1) $f(0_R) = 0_S$,
- (2) f(-a) = -f(a) for all $a \in R$,
- (3) f(a-b) = f(a) f(b) for all $a, b \in \mathbb{R}$, and

If R is a ring with identity and f is surjective, then

- (4) S is a ring with identity $f(1_R)$, and
- (5) If u is a unit in R, then f(u) is a unit in S and $f(u)^{-1} = f(u^{-1})$.

Corollary 3.11: If $f : R \to S$ is a homomorphism of rings, then the image of f is a subring of S. (The image Im(f) of f is $Im(f) = \{s \in S \mid s = f(r) \text{ for some } r \in S\}$.)

Fact: If $f: R \to S$ is an isomorphism of rings, then $f^{-1}: S \to R$ is an isomorphism of rings.