
Midterm I review sheet: Math 412, Winter 2014

Principle of Mathematical Induction: Let {P (n)}n∈N be a family of mathematical state-
ments indexed by the natural numbers N. If P (0) is true and P (k + 1) is true whenever P (k) is
true, then P (n) is true for all n ∈ N.

Well-ordering axiom: Every non-empty subset of the set of non-negative integers contains a
smallest element.

The Division algorithm: Let a and b be integers with b > 0. Then there exist unique integers
q and r such that a = bq + r and 0 ≤ r < b. (q is the quotient and r is the remainder.)

Definition: Let a and b be integers with b 6= 0, we say that b divides a, and write b | a if a = bc
for some integer c.

Defiinition: If a and b are integers, not both 0, then the greatest common divisor of a and
b, written (a, b), is the largest integer which divides both a and b, i.e. d = (a, b) if

(1) d | a and d | b, and
(2) if c | a and c | b, then c ≤ d.

Theorem 1.2: If a and b are integers, not both zero, then there exist integers u and v so that
(a, b) = au + bv.

Corollary 1.3: If a and b are integers, not both zero, and d is a positive integer, then d = (a, b)
if and only if

(1) d | a and d | b, and
(2) if c | a and c | b, then c | d.

Corollary 1.4: If a | bc and (a, b) = 1, then a | c.
Definition: An integer p is prime if p 6= 0,±1 and its only divisors are ±1 and ±p.

Theorem 1.5: Suppose that p is a integer with p 6= 0,±1. Then p is prime if and only if
whenever p | bc then p | b or p | c.
Corollary 1.6: If p is prime and p | a1 · · · an, then p | ai for some ai.

Theorem 1.8: Every integer n, except 0,±1, can be written as a product of primes. Moreover,
if

n = p1 · · · pr = q1 · · · qs
where each pi and each qj is prime, then r = s and, after re-ordering, pi = ±qi for all i ∈ {1, . . . , r}.
Definition: If a, b, n ∈ Z and n > 1, then we say a is congruent to b (modulo n), and write
a ≡ b(mod n), if n | b− a.

Theorem 2.1: If a, b, c, n ∈ Z and n > 1, then

(1) a ≡ a(mod n),
(2) if a ≡ b(mod n), then b ≡ a(mod n), and
(3) if a ≡ b(mod n) and b ≡ c(mod n), then a ≡ c(mod n).

Definition: If a, n ∈ Z and n > 1, then the congruence class of a modulo n is the set of all
integers that are congruent to a modulo n, i.e.

[a] = {b ∈ Z | b ≡ a(mod n)}.

Theorem 2.3: a ≡ c(mod n) if and only if [a] = [c].

Corollary 2.4: Two congruence classes modulo n are either disjoint or identical.

Corollary 2.5: Suppose that n > 1 is an integer and consider congruence classes modulo n.
Then

(1) If a is an integer and r is its remainder when divided by n, then [a] = [r].
(2) There are exactly n congruence classes, namely [0], [1], . . . , [n− 1].
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Definition: If n > 1 is an integer, let Zn = {[0], [1], . . . , [n − 1]} and define the operations
[a]⊕ [b] = [a⊕ b] and [a]� [b] = [ab].

Definition: A ring is a non-empty set with two operations satisfying the following 8 axioms for
all a, b, c ∈ R.

(1) a + b ∈ R
(2) a + (b + c) = (a + b) + c
(3) a + b = b + a
(4) There exists 0R ∈ R so that a + 0R = a = 0R + a for all a ∈ R.
(5) For each a ∈ R, the equation a + x = 0R has a solution in R.
(6) ab ∈ R
(7) a(bc) = (ab)c
(8) a(b + c) = ab + ac and (a + b)c = ac + bc.

Defiintions: A commutative ring is a ring such that

(9) ab = ba for all a, b ∈ R.

Definition: A ring with identity is a ring such that there exists 1R ∈ R so that

(10) a1R = a = 1Ra for all a ∈ R.

Theorem 2.7: If n > 1 is an integer, then Zn is a commutative ring with identity.

Definition: If R and S are rings and R×S = {(r, s) | r ∈ R, s ∈ S} then we define two operations
on R×S by (r, s)+(r′, s′) = (r+s, r′+s′) and (r, s)(r′, s′) = (rr′, ss′) for all (r, s), (r′, s′) ∈ R×S.

Theorem 3.1: If R and S are rings, then R × S is a ring. If both R and S are commutative,
then R × S is commutative and if both R and S have identities then (1R, 1S) is an identity for
R× S.

Theorem 3.3: If a ∈ R and R is a ring, then a + x = 0R has a unique solution.

Definition: If a ∈ R, we define −a to be the unique solution of a + x = 0R and, if a, b ∈ R, we
define a− b = a + (−b).
Theorem 3.4: If a, b, c ∈ R, R is a ring and a + b = a + c, then b = c.

Theorem 3.5: If a, b ∈ R and R is a ring, then

(1) a0R = 0R = 0Ra. In particular, 0R0R = 0R.
(2) a(−b) = −ab = (−a)b
(3) −(−a) = a
(4) −(a + b) = (−a) + (−b)
(5) −(a− b) = −a + b
(6) (−a)(−b) = ab
(7) If R has an identity, (−1R)a = −a.

Definition: A non-empty subset S of a ring R is a subring if S is a ring (with the restrictions
of the operations of R.)

Theorem 3.2: Suppose that R is a ring and S is a subset of R, then S is a subring of R if the
following four conditions hold:

(1) S is closed under addition (i.e. if a, b ∈ S, then a + b ∈ S), and
(2) S is closed under multiplication (i.e. if a, b ∈ S, then ab ∈ S).
(3) 0R ∈ S, and
(4) If a ∈ S, then a + x = 0R has a solution in S.

Theorem: 3.6: A non-empty subset S of a ring R is a subring of R if

(1) S is closed under subtraction (i.e. if a, b ∈ S, then a− b ∈ S), and
(2) S is closed under multiplication (i.e. if a, b ∈ S, then ab ∈ S).
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Definition: A commutative ring R with identity 1R 6= 0R is an integral domain if
(11) If ac = 0R in R, then a = 0R or c = 0R.

Definition: A commutative ring R with identity 1R 6= 0R is a field if
(12) If a 6= 0R in R, then the equation ax = 1R has a solution in R.

Theorem 2.8: If p > 1 is an integer, then the following are equivalent:

(1) p is prime.
(2) Zp is an integral domain.
(3) Zp is a field.

Definition: A non-zero element a of a ring R is a zero divisor if there exists a non-zero element
c of R so that ac = 0R or ca = 0R.

Definition: An element a of a ring R is a unit if there exists u ∈ R so that au = 1R = au, in
which case we write u = a−1.

Theorem 2.9: If n > 1 is an integer, then [a] is a unit in Zn if and only if (a, n) = 1.

Theorem 3.7: If R is an integral domain, a 6= 0R and ab = ac then b = c.

Theorem 3.8: Every field is an integral domain.

Theorem 3.9: Every finite integral domain is a field.

Definition: A function f : R→ S between rings is an isomorphism if

(1) f is injective,
(2) f is surjective, and
(3) f(a + b) = f(a) + f(b) and f(ab) = f(a)f(b) for all a, b ∈ R.

Definition: A function f : R→ S between rings is a homomorphism if f(a+ b) = f(a) + f(b)
and f(ab) = f(a)f(b) for all a, b ∈ R.

Theorem 3.10: If f : R→ S is an homomorphism of rings, then

(1) f(0R) = 0S ,
(2) f(−a) = −f(a) for all a ∈ R,
(3) f(a− b) = f(a)− f(b) for all a, b ∈ R, and

If R is a ring with identity and f is surjective, then
(4) S is a ring with identity f(1R), and
(5) If u is a unit in R, then f(u) is a unit in S and f(u)−1 = f(u−1).

Corollary 3.11: If f : R → S is a homomorphism of rings, then the image of f is a subring of
S. (The image Im(f) of f is Im(f) = {s ∈ S | s = f(r) for some r ∈ S}.)
Fact: If f : R→ S is an isomorphism of rings, then f−1 : S → R is an isomorphism of rings.
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