Midterm I review sheet: Math 412, Winter 2014

Principle of Mathematical Induction: Let {P(n)},en be a family of mathematical state-
ments indexed by the natural numbers N. If P(0) is true and P(k + 1) is true whenever P(k) is
true, then P(n) is true for all n € N.

Well-ordering axiom: Every non-empty subset of the set of non-negative integers contains a
smallest element.

The Division algorithm: Let a and b be integers with b > 0. Then there exist unique integers
q and r such that a = bg+ r and 0 <r < b. (q is the quotient and r is the remainder.)

Definition: Let a and b be integers with b # 0, we say that b divides a, and write b | a if a = be
for some integer c.

Defiinition: If a and b are integers, not both 0, then the greatest common divisor of a and
b, written (a,b), is the largest integer which divides both a and b, i.e. d = (a,b) if

(1) d]aand d | b, and

(2) if¢|aand ¢ | b, then ¢ < d.
Theorem 1.2: If a and b are integers, not both zero, then there exist integers u and v so that
(a,b) = au + bv.
Corollary 1.3: If a and b are integers, not both zero, and d is a positive integer, then d = (a,b)
if and only if

(1) d|aand d|b, and

(2) if ¢ | @ and ¢ | b, then ¢ | d.
Corollary 1.4: If a | bc and (a,b) =1, then a | c.
Definition: An integer p is prime if p # 0, 1 and its only divisors are +1 and +p.

Theorem 1.5: Suppose that p is a integer with p # 0,+1. Then p is prime if and only if
whenever p | be then p | bor p | c.

Corollary 1.6: If p is prime and p | aj - - - ay, then p | a; for some a;.

Theorem 1.8: Every integer n, except 0, &1, can be written as a product of primes. Moreover,
if
n=piPr=4q1-""(qs

where each p; and each g; is prime, then r = s and, after re-ordering, p; = +¢; foralli € {1,...,7}.
Definition: If a,b,n € Z and n > 1, then we say a is congruent to b (modulo n), and write
a =b(mod n), if n|b— a.
Theorem 2.1: If a,b,¢c,n € Z and n > 1, then

(1) a = a(mod n),

(2) if a = b(mod n), then b = a(mod n), and

(3) if a = b(mod n) and b = ¢(mod n), then a = ¢(mod n).
Definition: If a,n € Z and n > 1, then the congruence class of ¢ modulo 7 is the set of all
integers that are congruent to ¢ modulo n, i.e.

[a] ={beZ | b= a(mod n)}.

Theorem 2.3: a = c¢(mod n) if and only if [a] = [].
Corollary 2.4: Two congruence classes modulo n are either disjoint or identical.

Corollary 2.5: Suppose that n > 1 is an integer and consider congruence classes modulo n.
Then

(1) If a is an integer and r is its remainder when divided by n, then [a] = [r].

(2) There are exactly n congruence classes, namely [0], [1],...,[n — 1].
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Definition: If n > 1 is an integer, let Z,, = {[0],[1],...,[n — 1]} and define the operations
[a] @ [b] = [a ® b] and [a] © [b] = [ab].
Definition: A ring is a non-empty set with two operations satisfying the following 8 axioms for

all a,b,c € R.

)a+beR

a+(b+c)=(a+b)+c

a+b=b+a

There exists Ogp € R so that a +0g =a =0g + a for all a € R.
For each a € R, the equation a + x = O has a solution in R.
abe R

a(be) = (ab)e
(8) a(b+c) = ab+ ac and (a + b)c = ac + be.

(1
(2)
(3)
(4)
()
(6)
(7)
8

Defiintions: A commutative ring is a ring such that
(9) ab = ba for all a,b € R.

Definition: A ring with identity is a ring such that there exists 1z € R so that
(10) alg = a = 1Ra for all @ € R.

Theorem 2.7: If n > 1 is an integer, then Z,, is a commutative ring with identity.

Definition: If R and S are rings and Rx S = {(r,s) | r € R, s € S} then we define two operations
on Rx S by (r,s)+(r',s') = (r+s,"+s") and (r,s)(r', s') = (rr’, s¢) for all (r,s), (', s') € RxS.
Theorem 3.1: If R and S are rings, then R x S is a ring. If both R and S are commutative,

then R x S is commutative and if both R and S have identities then (1r,1g) is an identity for
R x S.

Theorem 3.3: If a € R and R is a ring, then a + z = O has a unique solution.

Definition: If « € R, we define —a to be the unique solution of a + x = O and, if a,b € R, we
define a — b = a + (—b).

Theorem 3.4: If a,b,c € R, Risaring and a +b=a+ ¢, then b = c.

Theorem 3.5: If a,b € R and R is a ring, then
(1) a0r = O0r = Oga. In particular, 0gr0r = Og.
(2) a(=b) = —ab= (—a)b
(3) =(-a)=a
(4) —(a+b)=(-a)+ (=)
(5) =(a=b)=—a+b
(6) (—a)(=b) =ab
(7) If R has an identity, (—1r)a = —a.

Definition: A non-empty subset S of a ring R is a subring if S is a ring (with the restrictions
of the operations of R.)

Theorem 3.2: Suppose that R is a ring and S is a subset of R, then S is a subring of R if the
following four conditions hold:

(1) S is closed under addition (i.e. if a,b € S, then a + b € ), and

(2) S is closed under multiplication (i.e. if a,b € S, then ab € 5).

(3) Or € S, and

(4) If a € S, then a + x = Or has a solution in S.

Theorem: 3.6: A non-empty subset S of a ring R is a subring of R if

(1) S is closed under subtraction (i.e. if a,b € S, then a — b € S), and
(2) S is closed under multiplication (i.e. if a,b € S, then ab € 5).
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Definition: A commutative ring R with identity 1r # Og is an integral domain if
(11) If ac = Og in R, then a = O or ¢ = Op.
Definition: A commutative ring R with identity 1z # Og is a field if
(12) If a # Og in R, then the equation ax = 1 has a solution in R.
Theorem 2.8: If p > 1 is an integer, then the following are equivalent:
(1) pis prime.
(2) Z, is an integral domain.
(3) Zy is a field.

Definition: A non-zero element a of a ring R is a zero divisor if there exists a non-zero element
c of R so that ac = 0g or ca = Op.

Definition: An element a of a ring R is a unit if there exists u € R so that au = 1z = au, in
which case we write u = a ™.

Theorem 2.9: If n > 1 is an integer, then [a] is a unit in Z, if and only if (a,n) = 1.
Theorem 3.7: If R is an integral domain, a # Or and ab = ac then b = c.
Theorem 3.8: Every field is an integral domain.
Theorem 3.9: Every finite integral domain is a field.
Definition: A function f: R — S between rings is an isomorphism if
(1) f is injective,
(2) f is surjective, and
(3) fla+b) = f(a)+ f(b) and f(ab) = f(a)f(b) for all a,b € R.
Definition: A function f : R — S between rings is a homomorphism if f(a+b) = f(a) + f(b)
and f(ab) = f(a)f(b) for all a,b € R.
Theorem 3.10: If f: R — S is an homomorphism of rings, then

(1) f(0g) = 0s,
(2) f(—a) =—f(a) for all a € R,
(3) fla—0b)= f(a) — f(b) for all a,b € R, and
If R is a ring with identity and f is surjective, then
(4) S is a ring with identity f(1g), and
(5) If u is a unit in R, then f(u) is a unit in S and f(u)™! = f(u™!).

Corollary 3.11: If f : R — S is a homomorphism of rings, then the image of f is a subring of
S. (The image Im(f) of fis Im(f) ={s€ S| s= f(r) for some r € S}.)

Fact: If f: R — S is an isomorphism of rings, then f~! : S — R is an isomorphism of rings.



