Math 412 - Introduction to Abstract Algebra

Midterm 2 Review Sheet - You must know definitions!

Theorem 4.2: If R is an integral domain and $f(x), g(x) \in R[x]$ are nonzero, then

$$\deg f(x)g(x) = \deg f(x) + \deg g(x).$$

Corollary 4.3: If R is an integral domain, then R[x] is an integral domain. **Corollary 4.4:** If R is a ring and $f(x), g(x), f(x)g(x) \in R[x]$ are nonzero, then

$$\deg f(x)g(x) \le \deg f(x) + \deg g(x).$$

Corollary 4.5: Let R be an integral domain and $f \in R[x]$. The polynomial f(x) is a unit iff f(x) is a constant polynomial that is a unit in R.

Theorem 4.6: (The Division Algorithm) Let F be a field and $f(x), g(x) \in F[x]$ with $g(x) \neq 0$. Then there exist unique polynomials q(x), r(x) such that

f(x) = g(x)q(x) + r(x) and either r(x) = 0 or $\deg r(x) < \deg g(x)$.

Theorem 4.7: Let F be a field with $a(x), b(x) \in F[x]$ with $b(x) \neq 0$. If b(x)|a(x), then cb(x)|a(x) for each nonzero $c \in R$.

Theorem 4.8: Let F be a field with $a(x), b(x) \in F[x]$ not both zero. Then there is a unique gcd d(x) of a(x) and b(x). Moreover, there exist polynomials u(x), v(x) such that

$$d(x) = a(x)u(x) + b(x)v(x)$$

Theorem 4.10: Let F be a field and $a(x), b(x), c(x) \in F[x]$. If a(x)|b(x)c(x) and a(x) and b(x) are relatively prime, then a(x)|c(x).

Theorem 4.11: A nonzero polynomial is reducible in F[x] iff it can be written as the product of two polynomials of lower degree.

Theorem 4.12: Let $p(x) \in F[x]$ be nonconstant. TFAE:

- 1. p(x) is irreducible.
- 2. If b(x) and c(x) are any polynomials such that p(x)|b(x)c(x), then p(x)|b(x) or p(x)|c(x).
- 3. If r(x) and s(x) are any polynomials such that p(x) = r(x)s(x), then r(x) or s(x) is a nonzero constant polynomial.

Theorem 4.14: Polynomials in F[x] factor uniquely up to reordering and multiplication by units.

Theorem 4.15: (The Remainder Theorem) The remainder when a polynomial $f(x) \in F[x]$ is divided by (x - a) equals f(a).

Theorem 4.16: (The Factor Theorem) An element $a \in F$ is a root of $f(x) \in F[x]$ iff (x - a) is a factor of f(x) in f[x].

Theorem 4.21: (Rational Root Test) If the rational number $r/s \neq 0$ is a root of $f(x) = a_n x^n + \cdots + a_1 x + a_0 \in \mathbb{Z}[x]$, then $r|a_0$ and $s|a_n$.

Theorem 4.24: (Eisenstein's Criterion) If $f(x) = a_n x^n + \cdots + a_1 x + a_0 \in \mathbb{Z}[x]$ and a prime p divides each of $a_0, a_1, \ldots, a_n - 1$, but p does not divide a_n and p^2 does not divide a_0 , then f(x) is irreducible in $\mathbb{Q}[x]$.

Theorem 4.26: (The Fundamental Theorem of Algebra) Every nonconstant polynomial in $\mathbb{C}[x]$ has a root in \mathbb{C} .

Theorem 5.1: The relation of congruence modulo a nonzero $p(x) \in F[x]$ is an equivalence relation.

Theorem 5.2: For a nonzero $p(x) \in F[x]$, if $f(x) \equiv g(x) \mod p(x)$ and $h(x) \equiv k(x) \mod p(x)$, then $f(x) + h(x) \equiv g(x) + k(x) \mod p(x)$ and $f(x)h(x) \equiv g(x)k(x) \mod p(x)$.

Theorem 5.3: The congruence $f(x) \equiv g(x) \mod p(x)$ holds iff $[f(x)] = [g(x)] \in F[x]/p(x)$.

Theorem 5.6: For nonconstant $p(x) \in F[x]$, if [f(x)] = [g(x)] and [h(x)] = [k(x)] in F[x]/p(x), then [f(x)+h(x)] = [g(x)+k(x)] and [f(x)h(x)] = [g(x)k(x)].

Theorem 5.7: For nonconstant $p(x) \in F[x]$, the set F[x]/p(x) is a commutative ring with 1. Moreover, the ring F[x]/p(x) contains a subring isomorphic to F.

Theorem 5.9: For nonconstant $p(x) \in F[x]$, if $f(x) \in F[x]$ is relatively prime to p(x), then [f(x)] is a unit in F[x]/p(x).

Theorem 5.10: For nonconstant $p(x) \in F[x]$, TFAE:

- 1. p(x) is irreducible in f[x]
- 2. F[x]/p(x) is a field
- 3. F[x]/p(x) is an integral domain.

Theorem 5.11: If p(x) is irreducible in F[x], then F[x]/p(x) is a field extension of F that contains a root of p(x).