Math 412 - Introduction to Abstract Algebra

Homework 7

This homework assignment concerns sections 5.1-3 in the text. Please turn the following seven problems in on Wednesday, March 19.

- 1. (5.1.8) Prove of disprove. If p(x) is relatively prime to k(x) and $f(x)k(x) \equiv g(x)k(x) \mod p(x)$, then $f(x) \equiv g(x) \mod p(x)$.
- 2. (5.2.10) Let F be a field and p(x) a nonconstant polynomial in F[x]. Prove that $F^* = \{[a] : a \in F\}$ is a subring of F[x]/p(x).
- 3. (5.2.11) Show that the ring $\mathbb{Q}[x]/(x^2)$ is not a field.
- 4. (5.2.16) Show that $\mathbb{Q}[x]/(x^2-2)$ is a field.
- 5. (5.3.2) Verify that $\mathbb{Q}(\sqrt{2}) = \{r + s\sqrt{2} : r, s \in \mathbb{Q}\}$ is a subfield of \mathbb{R} and is isomorphic to $\mathbb{Q}[x]/(x^2 2)$.
- 6. (5.3.8) If p(x) is an irreducible quadratic polynomial in F[x], show that F[x]/p(x) contains all roots of p(x).
- 7. (5.3.10) Show that $\mathbb{Q}[x]/(x^2-2)$ and $\mathbb{Q}[x]/(x^2-3)$ are not isomorphic.

Please complete, but do not hand in exercises 5.1.1,4,13, 5.2.1,4,9,14, and 5.3.1,4,7,11.