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3.3.15) If f : R → S be a homomorphism of rings and r is a zero divisor of
R, then f(r) need not be a zero divisor of S.

Examples: If f : Z6 → Z8 is the zero map, then 3 is a zero divisor in
Z6, but f(3) = 0 is not a zero divisor in Z8 (since it is zero). A less trivial
example is given by the homomorphism f : Z6 → Z2 given by taking [a]6 to
[a]2. Then 3 is a zero divisor in Z6, since 3 · 2 = 0 in Z6, but f(3) = 1 is not
a zero-divisor in Z2. Recall that Z2 is an integral domain, so has no zero
divisors.

3.3.28) a) There exists an example of a homomorphism of rings f : R → S
such that R has an identity but S does not. This does not contradict part
4 of Theorem 3.10.

Examples: If R has an identity and S does not have an identity, one can
still define the zero map f : R → S. Less trivially, let f : Z2 → Z2 × E
be given by f(0) = (0, 0) and f(1) = (1, 0). Neither of these examples
contradicts Theorem 3.10, since the homomorphisms are not surjective.

b) There exists an example of a homomorphism of rings f : R → S so
that S has an identity but R does not.

Examples: The zero map can again be used to construct trivial examples.
Less trivially, consider the homomorphism f : E → Z given by f(n) = n for
all n ∈ E.

3.3.30) Claim: If f : R→ S is a homomorphism of rings and

K = {r ∈ R | f(r) = 0S},

then K is a subring of R.
Proof: We first notice that f(0R) = 0S , by Theorem 3.10, so 0R ∈ K,

which implies that K is non-empty.
Suppose that a, b ∈ K, then f(a) = 0S and f(b) = 0S . Then, by part (3)

of Theorem 3.10,

f(a− b) = f(a)− f(b) = 0S − 0S = 0S

(where the first equality follows from Theorem 3.10). So, a− b ∈ K. There-
fore, K is closed under subtraction. Similarly, f(ab) = f(a)f(b) = 0S0S =
0S (where the last equality follows from Theorem 3.5), so ab ∈ K. There-
fore, K is closed under multiplication. Theorem 3.6 then implies that K is
a subring of R.

3.3.35) a) Claim: There does not exist an isomorphism f : Z→ E.
Proof: If such an isomorphism existed, then, by Theorem 3.10, f(1) would

be an identity for E and we previously observed that E does not have an
identity.

b) Claim: There does not exist an isomorphism f : R×R×R×R→M(R).
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Proof: This follows from the fact that R × R × R × R is commutative,
by Theorem 3.1, while we know that M(R) is non-commutative. More
explicitly, suppose that f is an isomorphism and A,B ∈ M(R) are chosen
so that AB 6= BA. Then, there would exist a, b ∈ R × R × R × R so that
f(a) = A and f(b) = B. Since R × R × R × R is a commutative ring, by
Theorem 3.1,

AB = f(a)f(b) = f(ab) = f(ba) = f(b)f(a) = BA

which gives a contradiction.
c) Claim: There does not exist an isomorphism f : Z4 × Z14 → Z16

Proof: Z4 × Z14 has 56 elements and Z16 has 16 elements, so there is no
bijection between Z4 × Z14 and Z16, hence no isomorphism.

e) Claim: There does not exist an isomorphism f : Z× Z2 → Z.
Proof: If such an isomorphism existed, then f(0, 1) would be a non-zero

element of Z so that f(0, 1) + f(0, 1) = f((0, 1) + (0, 1)) = f((0, 0)) = 0.
However, Z does not contain any such element.

f) Claim: There does not exist an isomorphism f : Z4 × Z4 → Z16.
Proof: If such an isomorphism existed, then since Z4 × Z4 has identity

(1, 1) and Z16 has identity 1, Theorem 3.10 implies that f(1, 1) = 1. But
then

f(2, 2) = f((1, 1) + (1, 1)) = f(1, 1) + f(1, 1) = 1 + 1 = 2

and

f(0, 0) = f((2, 2) + (2, 2)) = f(2, 2) + f(2, 2) = 2 + 2 = 4 6= 0.

However, this contradicts part (1) of Theorem 3.10, which guarantees that
f(0, 0) = 0.


