Math 525 - Probability

Homework 3

- 1. Suppose we construct a random graph on four vertices with the probability any two vertices are connected by an edge being p = 1/4. Let the random variable X count the number of connected components and let the random variable Y count the size of the largest connected component.
 - (a) Describe the distribution function F_X and F_Y corresponding to each random variable.
 - (b) Describe the joint distribution function $F_{(X,Y)}$ of the random vector (X,Y).
 - (c) Show that, in this case, we can recapture the marginal distribution functions F_X and F_Y from $F_{(X,Y)}$. That is, sum across the rows and columns of the joint distribution function above.
 - (d) Calculate the median of each random variable and the random vector.
- 2. Prove this phenomenon in part (c) above is true for general F_X, F_Y , and $F_{(X,Y)}$.
- 3. Give an example to show the converse of part (d) above does not hold. That is, we cannot determine the joint distribution function $F_{(X,Y)}$ from F_X and F_Y alone.
- 4. Recall the uniform distribution on the interval $[\alpha, \beta]$ has a density function $f(x) = 1/(\beta \alpha)$ for $\alpha \le x \le \beta$ and vanishes otherwise. The exponential distribution has a density function $f(x) = \lambda e^{-\lambda x}$ for $x \ge 0$ and vanishes otherwise.
 - (a) Calculate the distribution function for each.
 - (b) Calculate the median of each.
- 5. Use the MacLaurin series of e^x to calculate the distribution function corresponding to the standard normal density function $f(x) = (1/\sqrt{2\pi})e^{-x^2/2}$. Use this power series to show that the median is x = 0.