
Math 256 Applied Honors Calculus IV, Differential Equations
Prof. J. Rauch Fall 2007

Homework Set 7 Due Friday, October 26, 2007

Reading. i. For Linear Algebra read Chapter 1 of Keith Miller’s Linear Algebra Notes. A link to the URL
is on the course web site.

ii. For perturbation theory, my lecture notes are available on my office door for consultation and/or
copying. I’d like to make a clearer version available so if someone volunteers their better notes, that would
be good. If someone finds a good online source for perturbation theory that too would be good.

iii. The proof of the error formula for Taylor Polynomials is posted on the web site. The error estimate
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for approximation by Pn(x; a) on the interval |x − a| ≤ µ is a consequence. To use it you need an estimate
on how large Mn is, as well as the distance |x − a| to the base point (it must be less than µ).

Advice. Rather than working many routine examples it is better to work a few and to think carefully
about what you have done to make sure that you master the fundamentals. Ask yourself what variations
are possible and how that might change what needs to be done.

Problems to Study.

• Routine Gaussian elimination. K. Miller Chapter 1 problems 1-8. Boyce 383/1-5

• Taylor polynomials. See your Calculus text. Typical problems are given next.

• Routine Taylor polynomial error estimates. a. If you approximate lnx by P2(x; 1) on |x− 1| ≤ µ, how
small must µ be taken so that the error is no larger than .001?

b. Same question for sinx and P2(x; 0) on |x| ≤ µ.

Remark. This is the key idea about Taylor approximation. It gets better as µ gets smaller. The
higher is n the faster it gets better.

• Routine Taylor polynomial estimate. a. If you approximate lnx on |x−1| ≤ 1/2 by Pn(x; 1) how large
must n be taken so that the error is no larger than .001?

b. Same question for sinx on |x| ≤ π/4 and Pn(x; 0).

• Routine perturbation theory. Solve the variant of the slightly nonlinear spring equation treated in class,

d2y

dt2
+ ω2y + ǫ y2 = 0, y(0) = 0, y′(0) = 1.

The unperturbed solution is sinωt.

Problems to Hand In.

• Routine Gaussian elimination. K. Miller Chapter 1 Problem 3a. You should work either by hand
showing the row reduction to upper triangular form or you should use MATLAB following the model
in gauss.m. On balance the latter is quicker and a more reliable way to do the arithmetic. Remember
>>format rat to get answers in fraction rather than decimal form. You will need to print a part of
your MATLAB session to document the computation.

1



• Gaussian elimination. K. Miller Chapter 1 Problem 5. This is a hand computation. It can be done
using symbolic computations in MATLAB, MAPLE, or MATHEMATICA. The point is to learn the
nature of row operations. So, it is BY HAND.

• Perturbation theory. Compute the first order perturbation theory approximation y0(t) + ǫy1(t) to the
solution of

dy

dt
− y + ǫty2 = 0, y(0) = 1 .

Here is a simple problem which cannot be solved exactly, but which can be solved in perturbation
theory.

• Perturbation theory. a. Compute the first order perturbation theory approximation to the solution of
the slightly damped oscillator,

y′′ + ǫy′ + ω2y = 0, y(0) = 1, y′(0) = 0 .

b. The goal is to reduce the friction ǫ to a level that for 0 ≤ t ≤ 2π/ω the friction modifies the solution
by less than 2%. Using the result in part a. estimate how large a value of ǫ can be tolerated.

Discussion. This problem is sufficiently simple that it can be easily analysed using exact solutions.
But, it is good practice in perturbation theory in a familiar context.

• Perturbation Theory. Boyce/DiPrima 206/32. This problem asks you to experiment with a problem in
perturbation theory. The program gravityspring.m is a model for how to use Matlab’s ode45 for such a
problem. That program offers three graphing options. There is a fourth, plot(Y(:,1),Y(:,2)), which
plots

(

y(t), y′(t)
)

in the y, y′ plane. It is particularly useful for part c, since in this graph periodic
solutions close on themselves.

We have the skills to go further.

g. Compute the first order perturbation theory approximation to u, that is

u(t, ǫ) ≈ u0(t) + ǫ u1(t) , u1(t) =
∂u

∂ǫ
(t, 0) .

h. Explain why this matches or not the observations about the amplitude A in part e.

Discussion. 1. In contrast to the small nonlinearity computation in class, this one yields a pertur-
bation of size ǫ. The in class problem yielded a perturbation of (relative) size ǫ2. 2. The first order
perturbation calculation can be used to answer part c. The method is due to Poincaré. We will not

present it. 3. An alternate method which definitively answers part c will be given near the end of the
course.
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