The Multiple Roots Algorithm

The input is an $n \times n$ complex matrix A and an eigenvalue, λ of A. Denote by $\mu \geq 1$ the multiplicity of λ as a root of the characteristic polynomial

$$
p(z):=\operatorname{det}(z I-A) \text {. }
$$

The output of the algorithm is μ linearly independent solutions,

$$
\Phi_{j}(t), \quad 1 \leq j \leq \mu
$$

of the differential equation $X^{\prime}=A X$.
Remarks. i. Taking the outputs from the distinct roots of p yields n linearly independent solutions.
ii. Their linear combinations give the general solution.
iii. Using them as columns yields a fundamental matrix, $\Psi(t)$.
iv. The exponential is computed using $e^{A t}=\Psi(t) \Psi^{-1}(0)$.
\mathbf{v}. First check to see if there are μ independent eigenvectors \mathbf{v}_{k} for λ. In that case there are μ independent solutions $e^{\lambda t} \mathbf{v}_{k}$.

Step I. Find vectors $\xi_{j} 1 \leq j \leq \mu$ which form a basis of the μ dimensional subspace

$$
\operatorname{Null}\left((A-\lambda I)^{\mu}\right)
$$

This is called the generalized eigenspace associated to λ.
Step II. For $1 \leq j \leq \mu$ define the solutions

$$
\left.\Phi_{j}(t):=e^{\lambda t} \sum_{k=0}^{\mu-1} \frac{t^{k}}{k!}(A-\lambda I)^{k} \xi_{j} . \quad \text { (Recall that } 0!:=1\right)
$$

Remarks. i. In case of n distinct eigenvalues all the μ are equal to 1 and this reduces to the standard eigenvalue eigenvector method.
ii. More generally, when there is a basis of eigenvectors, $(A-\lambda I) \xi_{j}=0$ so the terms with $j \geq 1$ all vanish, one recovers the standard method. The additional terms are only required $N\left((A-\lambda I)^{\mu}\right)$ is strictly larger than $N(A-\lambda I)$. Equivalently, there is an eigenvalue of multiplicity $\mu>1$ whose space of eigenvectors has dimension $<\mu$.
iii. That the Φ_{j} are solutions can be checked by differentiation using the fact that ($A-$ $\lambda I)^{\mu} \xi_{j}=0$.
iv. The difficult fact in this algorithm is that the nullspace in Step I has dimension equal to μ.

