The Multiple Roots Algorithm

The input is an $n \times n$ complex matrix A and an eigenvalue, λ of A. Denote by $\mu \geq 1$ the multiplicity of λ as a root of the characteristic polynomial

$$p(z) := \det (zI - A).$$

The output of the algorithm is μ linearly independent solutions,

$$\Phi_j(t), \qquad 1 \le j \le \mu.$$

of the differential equation X' = A X.

Remarks. i. Taking the outputs from the distinct roots of p yields n linearly independent solutions.

ii. Their linear combinations give the general solution.

iii. Using them as columns yields a fundamental matrix, $\Psi(t)$.

iv. The exponential is computed using $e^{At} = \Psi(t)\Psi^{-1}(0)$.

v. First check to see if there are μ independent eigenvectors \mathbf{v}_k for λ . In that case there are μ independent solutions $e^{\lambda t} \mathbf{v}_k$.

Step I. Find vectors ξ_j $1 \le j \le \mu$ which form a basis of the μ dimensional subspace

$$\operatorname{Null}\left(\left(A-\lambda I\right)^{\mu}\right).$$

This is called the **generalized eigenspace** associated to λ .

Step II. For $1 \le j \le \mu$ define the solutions

$$\Phi_j(t) := e^{\lambda t} \sum_{k=0}^{\mu-1} \frac{t^k}{k!} \left(A - \lambda I\right)^k \xi_j. \qquad (\text{Recall that } 0! := 1).$$

Remarks. i. In case of n distinct eigenvalues all the μ are equal to 1 and this reduces to the standard eigenvalue eigenvector method.

ii. More generally, when there is a basis of eigenvectors, $(A - \lambda I)\xi_j = 0$ so the terms with $j \ge 1$ all vanish, one recovers the standard method. The additional terms are only required $N((A - \lambda I)^{\mu})$ is *strictly* larger than $N(A - \lambda I)$. Equivalently, there is an eigenvalue of multiplicity $\mu > 1$ whose space of eigenvectors has dimension $< \mu$.

iii. That the Φ_j are solutions can be checked by differentiation using the fact that $(A - \lambda I)^{\mu} \xi_j = 0$.

iv. The difficult fact in this algorithm is that the nullspace in Step I has dimension equal to μ .