Ordinary Differential Equations Prof. J. Rauch
The Turing Instability

The Turing instability is elementary and surprising. It asserts that there are real linear constant
coefficient linear dynamics

X' = AX, and, X = BX

both strongly stable in the sense that the eigenvalues of A and B lie in the left half plane and
so that combining the effects to yield X' = (A + B)X yields an unstable equilibrium.

We construct examples with d = 2. The key step is to construct A, B whose dynamics are
centers and so that the sum dynamics is unstable.

Let
0 —e¢
A = (1 O>’ O<e<l.
With X = (z,y) the equation X’ = AX is,

= —ey, Y =z.

Multiply the first equation by x and the second by ey and add to find,
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On orbits, 22 + ey? is constant. The dynamics is a center and the trajectories are ellipses, with
the long axis along the y axis.

The second center is defined by,

B = <O 1>, 0<e<l.
— 0
On orbits,
d 2 2
¥ =—y, 9y =ex, and, W = 0.

The trajectories are ellipses, with the long axis along the x axis.
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is symmetric with eigenvalues +(1 — ) of both signs so the sum dynamics is unstable. Two
centers can sum to an unstable.

Define

The matrix

A:=A—6I, B:=B-6I, 0<d<<l.

The A and B have eigenvalues with real parts equal to —9. The eigenvalues of A+ B are equal to
—25+(1—¢) so for 6 < (1—¢)/2, the larger is strictly positive. Two exponentially asymptotically
stables can sum to an unstable.

Remark. If A and B are stable then tr (A+ B) = tr A+ tr B < 0 so the sum cannot have both
eigevalues with postive real part.



The example is just as surprising viewed the other way. The sum of the two unstable dynamics
A+ B and —B is stable. The sum of two unstables can be stable.

Also for the original A, B the matrix A + B has an unstable manifold with exponential growth
and that instabillity is stabilized by adding the neutrally stable —B. This is called dispersive
stabillization. This phenomenon in the context of partial differential equations is studied in [1].

Summarizing, we have the the following principal.

Theorem 0.1 (Turing instability) If d > 1 then knowing only the stability properties of the
constant coefficient linear systems of ordinary differential equations X' = AX and X' = BX
does not allow you to determine the stability of the system X' = (A+ B)X.

Turing encountered the sum of stables can be unstable in the context of reaction diffusion equa-
tions. He had a chemical reaction whose linearized behavior u; = Awu at an equilibrium was
stable. He added a stable but not scalar diffusion

w(t,x) = diag (v1, va, . .., Vq)Uze + Au, vj >0,

and found instability for the sum of the two stable processes. His classic paper on morphogenisis
in which this plays a central role is [2].

If one has additional information about the matrices A and B then sometimes one can predict
the stability of the sum dynamics. Two such situations are described in the next exercise.

Exercise. Prove that if A and B have eigenvalues with strictly negative real parts then the
same is true of A+ B if

i. A and B are both symmetric (hermitian symmetric in the complex case),

or,

t(A+B) _ tA _tB

ii. A and B commute. Hint. In this case prove that e = e“e'7,

References

[1] G. Métivier and J. Rauch, Dispersive stabilization, London Math. J., to appear.

[2] A. Turing, The chemical basis of morphogenesis, Phil. Trans. Roy. Soc. B 237(1952)37-72.



