The Turing Instability

The Turing instability is elementary and surprising. It asserts that there are real linear constant coefficient linear dynamics

$$
X^{\prime}=\widetilde{A} X, \quad \text { and }, \quad X^{\prime}=\widetilde{B} X
$$

both strongly stable in the sense that the eigenvalues of \widetilde{A} and \widetilde{B} lie in the left half plane and so that combining the effects to yield $X^{\prime}=(\widetilde{A}+\widetilde{B}) X$ yields an unstable equilibrium.
We construct examples with $d=2$. The key step is to construct A, B whose dynamics are centers and so that the sum dynamics is unstable.
Let

$$
A:=\left(\begin{array}{cc}
0 & -\varepsilon \\
1 & 0
\end{array}\right), \quad 0<\varepsilon<1
$$

With $X=(x, y)$ the equation $X^{\prime}=A X$ is,

$$
x^{\prime}=-\varepsilon y, \quad y^{\prime}=x
$$

Multiply the first equation by x and the second by εy and add to find,

$$
0=x x^{\prime}+\varepsilon y y^{\prime}=\frac{1}{2} \frac{d\left(x^{2}+\varepsilon y^{2}\right)}{d t}
$$

On orbits, $x^{2}+\varepsilon y^{2}$ is constant. The dynamics is a center and the trajectories are ellipses, with the long axis along the y axis.
The second center is defined by,

$$
B:=\left(\begin{array}{cc}
0 & 1 \\
-\varepsilon & 0
\end{array}\right), \quad 0<\varepsilon<1
$$

On orbits,

$$
x^{\prime}=-y, \quad y^{\prime}=\varepsilon x, \quad \text { and }, \quad \frac{d\left(\varepsilon x^{2}+y^{2}\right)}{d t}=0
$$

The trajectories are ellipses, with the long axis along the x axis.
The matrix

$$
A+B=\left(\begin{array}{cc}
0 & 1-\varepsilon \\
1-\varepsilon & 0
\end{array}\right)
$$

is symmetric with eigenvalues $\pm(1-\varepsilon)$ of both signs so the sum dynamics is unstable. Two centers can sum to an unstable.

Define

$$
\widetilde{A}:=A-\delta I, \quad \widetilde{B}:=B-\delta I, \quad 0<\delta \ll 1
$$

The \widetilde{A} and \widetilde{B} have eigenvalues with real parts equal to $-\delta$. The eigenvalues of $\widetilde{A}+\widetilde{B}$ are equal to $-2 \delta \pm(1-\varepsilon)$ so for $\delta<(1-\varepsilon) / 2$, the larger is strictly positive. Two exponentially asymptotically stables can sum to an unstable.

Remark. If A and B are stable then $\operatorname{tr}(A+B)=\operatorname{tr} A+\operatorname{tr} B \leq 0$ so the sum cannot have both eigevalues with postive real part.

The example is just as surprising viewed the other way. The sum of the two unstable dynamics $\widetilde{A}+\widetilde{B}$ and $-\widetilde{B}$ is stable. The sum of two unstables can be stable.

Also for the original A, B the matrix $A+B$ has an unstable manifold with exponential growth and that instabillity is stabilized by adding the neutrally stable $-B$. This is called dispersive stabillization. This phenomenon in the context of partial differential equations is studied in [1].
Summarizing, we have the the following principal.

Theorem 0.1 (Turing instability) If $d>1$ then knowing only the stability properties of the constant coefficient linear systems of ordinary differential equations $X^{\prime}=A X$ and $X^{\prime}=B X$ does not allow you to determine the stability of the system $X^{\prime}=(A+B) X$.

Turing encountered the sum of stables can be unstable in the context of reaction diffusion equations. He had a chemical reaction whose linearized behavior $u_{t}=A u$ at an equilibrium was stable. He added a stable but not scalar diffusion

$$
u_{t}(t, x)=\operatorname{diag}\left(\nu_{1}, \nu_{2}, \ldots, \nu_{d}\right) u_{x x}+A u, \quad \nu_{j}>0
$$

and found instability for the sum of the two stable processes. His classic paper on morphogenisis in which this plays a central role is [2].
If one has additional information about the matrices A and B then sometimes one can predict the stability of the sum dynamics. Two such situations are described in the next exercise.

Exercise. Prove that if A and B have eigenvalues with strictly negative real parts then the same is true of $A+B$ if
i. A and B are both symmetric (hermitian symmetric in the complex case),
or,
ii. A and B commute. Hint. In this case prove that $e^{t(A+B)}=e^{t A} e^{t B}$.

References

[1] G. Métivier and J. Rauch, Dispersive stabilization, London Math. J., to appear.
[2] A. Turing, The chemical basis of morphogenesis, Phil. Trans. Roy. Soc. B 237(1952)37-72.

