
Ordinary Differential Equations Prof. J. Rauch

The Turing Instability

The Turing instability is elementary and surprising. It asserts that there are real linear constant
coefficient linear dynamics

X ′ = Ã X, and, X ′ = B̃ X

both strongly stable in the sense that the eigenvalues of Ã and B̃ lie in the left half plane and
so that combining the effects to yield X ′ = (Ã + B̃)X yields an unstable equilibrium.

We construct examples with d = 2. The key step is to construct A, B whose dynamics are
centers and so that the sum dynamics is unstable.

Let

A :=

(
0 −ε
1 0

)
, 0 < ε < 1 .

With X = (x, y) the equation X ′ = AX is,

x′ = −εy, y′ = x .

Multiply the first equation by x and the second by εy and add to find,

0 = xx′ + ε y y′ =
1

2

d(x2 + ε y2)

dt
.

On orbits, x2 + ε y2 is constant. The dynamics is a center and the trajectories are ellipses, with
the long axis along the y axis.

The second center is defined by,

B :=

(
0 1
−ε 0

)
, 0 < ε < 1 .

On orbits,

x′ = −y, y′ = ε x , and,
d(ε x2 + y2)

dt
= 0.

The trajectories are ellipses, with the long axis along the x axis.

The matrix

A + B =

(
0 1 − ε

1 − ε 0

)

is symmetric with eigenvalues ±(1 − ε) of both signs so the sum dynamics is unstable. Two

centers can sum to an unstable.

Define
Ã := A − δ I , B̃ := B − δ I , 0 < δ << 1 .

The Ã and B̃ have eigenvalues with real parts equal to −δ. The eigenvalues of Ã+B̃ are equal to
−2δ±(1−ε) so for δ < (1−ε)/2, the larger is strictly positive. Two exponentially asymptotically

stables can sum to an unstable.

Remark. If A and B are stable then tr (A + B) = tr A + tr B ≤ 0 so the sum cannot have both
eigevalues with postive real part.

1



The example is just as surprising viewed the other way. The sum of the two unstable dynamics
Ã + B̃ and −B̃ is stable. The sum of two unstables can be stable.

Also for the original A,B the matrix A + B has an unstable manifold with exponential growth
and that instabillity is stabilized by adding the neutrally stable −B. This is called dispersive

stabillization. This phenomenon in the context of partial differential equations is studied in [1].

Summarizing, we have the the following principal.

Theorem 0.1 (Turing instability) If d > 1 then knowing only the stability properties of the

constant coefficient linear systems of ordinary differential equations X ′ = AX and X ′ = BX
does not allow you to determine the stability of the system X ′ = (A + B)X.

Turing encountered the sum of stables can be unstable in the context of reaction diffusion equa-
tions. He had a chemical reaction whose linearized behavior ut = Au at an equilibrium was
stable. He added a stable but not scalar diffusion

ut(t, x) = diag (ν1, ν2, . . . , νd)uxx + Au, νj > 0,

and found instability for the sum of the two stable processes. His classic paper on morphogenisis
in which this plays a central role is [2].

If one has additional information about the matrices A and B then sometimes one can predict
the stability of the sum dynamics. Two such situations are described in the next exercise.

Exercise. Prove that if A and B have eigenvalues with strictly negative real parts then the
same is true of A + B if

i. A and B are both symmetric (hermitian symmetric in the complex case),

or,

ii. A and B commute. Hint. In this case prove that et(A+B) = etAetB .
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