The Wronskian Theorems

§1. Second order equations.

Second Order Wronskian Theorem. Suppose that $y_{1}(t)$ and $y_{2}(t)$ are solutions of the seond order linear homogeneous equation $L y=0$ on an interval, I. Then, the following are equaivalent.

1. For some $t_{0} \in I$,

$$
\operatorname{det}\left|\begin{array}{ll}
y_{1}\left(t_{0}\right) & y_{2}\left(t_{0}\right) \\
y_{1}^{\prime}\left(t_{0}\right) & y_{2}^{\prime}\left(t_{0}\right)
\end{array}\right| \neq 0 .
$$

2. For any values a, b there are uniquely determined constants c_{1}, c_{2} so that $y=c_{1} y_{1}+c_{2} y_{2}$ is the solution of,

$$
L y=0, \quad y\left(t_{0}\right)=a, \quad y^{\prime}\left(t_{0}\right)=b
$$

3. Every solution of $L y=0$ is of the form $y=c_{1} y_{1}+c_{2} y_{2}$ for real constants c_{1}, c_{2}. That is, $c_{1} y_{1}+c_{2} y_{2}$ is the general solution.
4. (Theorem 3.3.1) For all $t \in I$,

$$
\operatorname{det}\left|\begin{array}{cc}
y_{1}(t) & y_{2}(t) \\
y_{1}^{\prime}(t) & y_{2}^{\prime}(t)
\end{array}\right| \neq 0
$$

5. The solutions y_{1} and y_{2} are linearly independent.

Remarks. i. The determinant appearing in $\mathbf{1}$ and $\mathbf{4}$ is called the wronskian.
ii. The equivalence of the first two is Theorem 3.2.2.
iii. The equivalence of the third with the first two is Theorem 3.2.4.
iv. The equivalence of the fourth with the first three is Theorem 3.3.1.
\mathbf{v}. The equivalence of the fifth with the first four is Theorem 3.3.3.

§2. Equations of order n.

Suppose that

$$
L=\frac{d^{n}}{d t^{n}}+a_{n-1}(t) \frac{d^{n-1}}{d t^{n-1}}+a_{n-2}(t) \frac{d^{n-2}}{d t^{n-2}}+\cdots+a_{1}(t) \frac{d}{d t}+a_{0}(t),
$$

is an $n^{\text {th }}$ order linear differential operators with continuous real valued coefficients on an interval I.
Suppose that for $j=1,2, \ldots, n, y_{j}(t)$ satisfies $L y_{j}=0$.
Definition. The wronskian of these n solutions is defined as the $n \times n$ determinant,

$$
W(t):=\operatorname{det}\left|\begin{array}{cccc}
y_{1}(t) & y_{2}(t) & \cdots & y_{n}(t) \\
y_{1}^{\prime}(t) & y_{2}^{\prime}(t) & \cdots & y_{n}^{\prime}(t) \\
\cdots & & & \cdots \\
\cdots & & & \cdots \\
y_{1}^{(n-1)}(t) & y_{2}^{(n-1)}(t) & \cdots & y_{n}^{(n-1)}(t)
\end{array}\right| .
$$

Definition. The solutions are linearly dependent when there are constants $a_{1}, a_{2}, \ldots, a_{n}$ not all zero so that $a_{1} y_{1}+a_{2} y_{2}+\cdots+a_{n} y_{n}=0$. Otherwise they are linearly independent.

General Wronskian Theorem. The following are equaivalent.

1. For some $t_{0} \in I, W\left(t_{0}\right) \neq 0$.
2. For any values $b_{0}, b_{1}, \ldots, b_{n-1}$ there are uniquely determined constants c_{j} so that $y=c_{1} y_{1}+c_{2} y_{2}+\cdots+c_{n} y_{n}$ is the solution of the initial value problem,

$$
L y=0, \quad y\left(t_{0}\right)=b_{0}, \quad y^{\prime}\left(t_{0}\right)=b_{1}, \quad \cdots \quad y^{(n-1)}\left(t_{0}\right)=b_{n-1} .
$$

3. Every solution of $L y=0$ is of the form $c_{1} y_{1}+c_{2} y_{2}+\cdots+c_{n} y_{n}$ for real constants c_{j}. That is, $c_{1} y_{1}+c_{2} y_{2}+\cdots+c_{n} y_{n}$ is the general solution.
4. For all $t \in I, W(t) \neq 0$.
5. The solutions $y_{1}, y_{2}, \ldots, y_{n}$ are linearly independent.

The proof is almost identical to the proof in the special case $n=2$.

§3. First order Systems.

Suppose that

$$
L=\frac{d}{d t}+A(t), \quad A(t)=\left(\begin{array}{cccc}
a_{11}(t) & a_{12}(t) & \ldots & a_{1 n}(t) \\
a_{21}(t) & & & a_{2 n}(t) \\
& & & \\
a_{n 1}(t) & a_{n 2}(t) & \ldots & a_{n n}(t)
\end{array}\right)
$$

is an first order linear system with continuous coefficients on an interval I.
Suppose that for $j=1,2, \ldots, n, X^{(j)}=\left(x_{1}^{(j)}(t), x_{2}^{(j)}(t), \ldots, x_{n}^{(j)}(t)\right)$ satisfies $L X=0$.

Definition. The wronskian of these n solutions is defined as,

$$
W(t):=\operatorname{det}\left[X^{(1)}(t), X^{(1)}(t), \ldots, X^{(1)}(t)\right]
$$

where the $n \times n$ matrix on the right has $j^{\text {th }}$ column equal to $X^{(j)}(t)$.
The wronskian is nonzero at t_{0} if and only if the vectors $X^{(1)}\left(t_{0}\right), \ldots, X^{(n)}\left(t_{0}\right)$ are linearly independent, if and only if the vectors $X^{(1)}\left(t_{0}\right), \ldots, X^{(n)}\left(t_{0}\right)$ form a basis of \mathbf{R}^{n} or \mathbf{C}^{n} depending on the case.

General Wronskian Theorem. The following are equaivalent.

1. For some $t_{0} \in I, W\left(t_{0}\right) \neq 0$.
2. For any values $B \in \mathbf{R}^{n}$ there are uniquely determined constants c_{j} so that $X=c_{1} X^{(1)}+c_{2} X^{(2)}+\cdots+c_{n} X^{(n)}$ is the solution of the initial value problem,

$$
L X=0, \quad X(0)=B
$$

3. Every solution of $L X=0$ is of the form $X=c_{1} X^{(1)}+c_{2} X^{(2)}+\cdots+c_{n} X^{(n)}$ for real constants c_{j}. That is, $X=c_{1} X^{(1)}+c_{2} X^{(2)}+\cdots+c_{n} X^{(n)}$ is the general solution.
4. For all $t \in I, W(t) \neq 0$.
5. The solutions $X^{(1)}, X^{(2)}, \cdots, X^{(n)}$ are linearly independent.

The proof is almost identical to the proof in the special case $n=2$.

