The Wronskian Theorems

§1. Second order equations.

Second Order Wronskian Theorem. Suppose that $y_1(t)$ and $y_2(t)$ are solutions of the seond order linear homogeneous equation Ly = 0 on an interval, I. Then, the following are equal equal to I.

1. For some $t_0 \in I$,

$$\det \begin{vmatrix} y_1(t_0) & y_2(t_0) \\ y'_1(t_0) & y'_2(t_0) \end{vmatrix} \neq 0.$$

2. For any values a, b there are uniquely determined constants c_1, c_2 so that $y = c_1y_1 + c_2y_2$ is the solution of,

$$Ly = 0, y(t_0) = a, y'(t_0) = b.$$

- **3.** Every solution of Ly = 0 is of the form $y = c_1y_1 + c_2y_2$ for real constants c_1, c_2 . That is, $c_1y_1 + c_2y_2$ is the general solution.
- **4.** (Theorem 3.3.1) For all $t \in I$,

$$\det \begin{vmatrix} y_1(t) & y_2(t) \\ y'_1(t) & y'_2(t) \end{vmatrix} \neq 0.$$

5. The solutions y_1 and y_2 are linearly independent.

Remarks. i. The determinant appearing in 1 and 4 is called the wronskian.

1

- ii. The equivalence of the first two is Theorem 3.2.2.
- iii. The equivalence of the third with the first two is Theorem 3.2.4.
- iv. The equivalence of the fourth with the first three is Theorem 3.3.1.
- **v.** The equivalence of the fifth with the first four is Theorem 3.3.3.

$\S 2$. Equations of order n.

Suppose that

$$L = \frac{d^n}{dt^n} + a_{n-1}(t) \frac{d^{n-1}}{dt^{n-1}} + a_{n-2}(t) \frac{d^{n-2}}{dt^{n-2}} + \cdots + a_1(t) \frac{d}{dt} + a_0(t),$$

is an $n^{\rm th}$ order linear differential operators with continuous real valued coefficients on an interval I.

Suppose that for j = 1, 2, ..., n, $y_j(t)$ satisfies $L y_j = 0$.

Definition. The wronskian of these n solutions is defined as the $n \times n$ determinant,

$$W(t) := \det \begin{vmatrix} y_1(t) & y_2(t) & \cdots & y_n(t) \\ y'_1(t) & y'_2(t) & \cdots & y'_n(t) \\ \vdots & \vdots & \ddots & \vdots \\ y_1^{(n-1)}(t) & y_2^{(n-1)}(t) & \cdots & y_n^{(n-1)}(t) \end{vmatrix}.$$

Definition. The solutions are **linearly dependent** when there are constants a_1, a_2, \ldots, a_n not all zero so that $a_1y_1 + a_2y_2 + \cdots + a_ny_n = 0$. Otherwise they are **linearly independent**.

General Wronskian Theorem. The following are equaivalent.

- **1.** For some $t_0 \in I$, $W(t_0) \neq 0$.
- **2.** For any values $b_0, b_1, \ldots, b_{n-1}$ there are uniquely determined constants c_j so that $y = c_1y_1 + c_2y_2 + \cdots + c_ny_n$ is the solution of the initial value problem,

$$Ly = 0,$$
 $y(t_0) = b_0,$ $y'(t_0) = b_1,$ \cdots $y^{(n-1)}(t_0) = b_{n-1}.$

3. Every solution of Ly = 0 is of the form $c_1y_1 + c_2y_2 + \cdots + c_ny_n$ for real constants c_i . That is, $c_1y_1 + c_2y_2 + \cdots + c_ny_n$ is the general solution.

2

- **4.** For all $t \in I$, $W(t) \neq 0$.
- **5.** The solutions y_1, y_2, \ldots, y_n are linearly independent.

The proof is almost identical to the proof in the special case n=2.

§3. First order Systems.

Suppose that

$$L = \frac{d}{dt} + A(t), \qquad A(t) = \begin{pmatrix} a_{11}(t) & a_{12}(t) & \dots & a_{1n}(t) \\ a_{21}(t) & & & a_{2n}(t) \\ & & & & \\ a_{n1}(t) & a_{n2}(t) & \dots & a_{nn}(t) \end{pmatrix},$$

is an first order linear system with continuous coefficients on an interval I. Suppose that for $j=1,2,\ldots,n,\ X^{(j)}=\left(x_1^{(j)}(t),x_2^{(j)}(t),\ldots,x_n^{(j)}(t)\right)$ satisfies LX=0.

Definition. The wronskian of these n solutions is defined as,

$$W(t) := \det \left[X^{(1)}(t), X^{(1)}(t), \dots, X^{(1)}(t) \right],$$

where the $n \times n$ matrix on the right has j^{th} column equal to $X^{(j)}(t)$.

The wronskian is nonzero at t_0 if and only if the vectors $X^{(1)}(t_0), \ldots, X^{(n)}(t_0)$ are linearly independent, if and only if the vectors $X^{(1)}(t_0), \ldots, X^{(n)}(t_0)$ form a basis of \mathbf{R}^n or \mathbf{C}^n depending on the case.

General Wronskian Theorem. The following are equaivalent.

- **1.** For some $t_0 \in I$, $W(t_0) \neq 0$.
- **2.** For any values $B \in \mathbf{R}^n$ there are uniquely determined constants c_j so that $X = c_1 X^{(1)} + c_2 X^{(2)} + \cdots + c_n X^{(n)}$ is the solution of the initial value problem,

$$LX = 0, X(0) = B.$$

3. Every solution of LX=0 is of the form $X=c_1X^{(1)}+c_2X^{(2)}+\cdots+c_nX^{(n)}$ for real constants c_j . That is, $X=c_1X^{(1)}+c_2X^{(2)}+\cdots+c_nX^{(n)}$ is the general solution.

3

- **4.** For all $t \in I$, $W(t) \neq 0$.
- **5.** The solutions $X^{(1)}, X^{(2)}, \dots, X^{(n)}$ are linearly independent.

The proof is almost identical to the proof in the special case n=2.