Math 555, Fall 2002 Prof. J. Rauch

Midterm Exam October 17, 2002

Instructions. 1. Two sides of a 3.5in. \times 5in. sheet of notes from home. Closed book.

- 2. Show work and explain clearly.
- 3. There are six questions, one per page. 100 points total
- 1. (15 points) Show that if f(z) is an analytic function on a connected open set Ω and f depends only on x where z = x + iy, then f is a constant.

2. (14 points) Suppose that f(z) = 1/z, $g(z) = z^2$ and $A = \{z : 1 < |z| < 2, 0 < \arg z < \pi/4\}$. The set A is sketched below. Sketch the regions $f(A) = \{f(z) : z \in A\}$ and $g(A) = \{g(z) : z \in A\}$ on the axes provided. Indicate important lengths and angles in the sketch.

3. $(8+6 \text{ points})$ a. At what point(s) of the closed disc with center at i and radius equal to 2 does
the modulus of the analytic function $f(z) = z^4$ attain its maximum and minimum values.
b. Explain why this is consistent with the maximum and minimum modulus principles for analytic functions.

4. (10+10+10 points) Using theorems of complex analysis, evaluate the following three integrals. Be sure to state the general formula you are applying and to what function(s).

$$\frac{1}{2\pi i} \oint_{|z|=1} \frac{1}{(z-2)(z-4)^3} dz$$

b.
$$\frac{1}{2\pi i} \oint_{\partial\Omega} \frac{1}{(z-2)(z-4)^3} dz$$
,

where Ω is the annular region $1 \leq |z| \leq 3$. As usual, $\partial \Omega$ denotes the boundary of Ω oriented in the standard sense.

c.
$$\frac{1}{2\pi i} \oint_{\partial R} \frac{1}{(z-2)(z-4)^3} dz$$
,

where R is the annular region $3 \le |z| \le 5$.

- 5. (5+5+5 points) Liouville's Theorem asserts that an analytic function which is defined on the entire complex plane and is bounded must be a constant function. Does this result imply that any of the following functions is constant? Explain.
 - **a.** $\frac{1}{1+x^2+y^2}$, **b.** $\frac{1}{z^2}$, **c.** $\sin z$.

6. (6+6 points) a. The equation $z(t) = 6e^{it}$, 0 it. Be sure to label important points, coordinate	$\leq t \leq 1$ is a parametric equation a curve. Sketch s, angles, distances, etc.		
b. Sketch a domain in the complex z plane which is mapped in a one to one way onto the upper half plane $\{w : \operatorname{Im} w > 0\}$ by the mapping $w = e^z$.			
in prone (a , in a , o) of one mapping a			