
Math 555, Fall 2009 NAME ............................................

Final Exam Solutions and Grading Scheme. December 20, 2009

Instructions. 1. Closed book. Four sides of a 3.5in. × 5in. sheet of notes from home.
2. No electronics, phones, cameras, . . . etc.
3. Show work and explain clearly.
4. There are 8 questions. The last three problems are long! 53 points total.

1. (2+2+2 points). a. Let Γ be the straight line segment connecting z = 0 to z = 1 + i.
Compute

∫

Γ

x dz .

b. For |ζ| < 1 compute
1

2πi

∮

|z|=1

sin z

(z − ζ)n+1
dz .

c. For |ζ| > 1 compute the integral in part b.

Solution. a. Parameterize as z(t) = t(1 + i) = x(t) + iy(t), 0 ≤ t ≤ 1. Then x(t) = t
and dz/dt = 1 + i. The definition of line integral yields,

∫ 1

0

x(t)
dz(t)

dt
dt =

∫ 1

0

t (1 + i) dt = (1 + i)

∫ 1

0

t dt =
(1 + i)

2
.

b. The Cauchy Integral Formula shows that this is equal to

1

n!

dn(sin z)

dzn

∣

∣

∣

∣

z=ζ

.

c. In this case the integrand is analytic in the disk and Cauchy’s Theorem implies that
the integral is equal to zero.



2. (2+2+2 points). The function H(z) is analytic on the disk {|z| < ρ} with H(0) = 0
and H(0.01) = .02(1 + i).

a. Compute an approximate value for H ′(0).

b. Compute an approximate value for H(0.01i).

c. The function γ(z) is analytic in {|z| < 1} with Taylor expansion at the origin equal to

γ(z) = zm + higher order terms, m ≥ 2 .

Describe in words the image by γ of a small circle |z| = ρ << 1.

Solution. a. An approximate value of the derivative is given by the difference quotient,

H ′(0) ≈ H(0.01)− H(0)

0.01 − 0
=

.02(1 + i)

.01
= 2(1 + i) .

b.

H(0.01i) ≈ H(0) + 0.01 iH ′(0) ≈ 0 + 2(1 + i)(0.01) = .02(1 + i) .

c. Parameterize the circle as ρ eiθ then

γ ≈ ρm eimθ,

so the image is a contour that winds m times around the origin in the clockwise direction
not deviating far from the circle of radius ρm traversed at constant angular velocity.



3. (3+3 points). a. Compute

Resz=0
1

z sin z
.

b. Compute

Resz=π
1

z sin z
.

Solution. a.

1

sin z
=

1

z − z3/6 + · · · =
1

z

1

1 − z2/6 + · · · =
1

z

(

1 + z2/6 + · · ·
)

.

So,
1

z sin z
=

1

z2

(

1 + z2/6 + · · ·
)

.

The residue at z = 0 is equal to zero.

b. At z = π, sin z vanishes with derivative equal to −1 so

sin z = −(z − π) + · · · ,
1

z
=

1

π
+ · · · .

Therefore

1

z sin z
=

( 1

π
+ · · ·

) 1

−(z − π) + · · · =
( 1

π
+ · · ·

) −1

z − π

1

1 + · · ·

The residue at z = π is equal to −1/π.



4. (3+2 points). a. Find three nonzero terms of the Laurent expansion of the function

g(z) =
1

z − ζ
, ζ 6= 0,

in the region |z| > |ζ|.
b. The function h(z) is analytic in the punctured disk 0 < |z| < 1 with Laurent expansion

h(z) =

∞
∑

n=−∞

An zn .

In addition one has
1

2πi

∮

|z|=1/2

h(z)

z3
dz =

√
11.

Find the value of one of the coefficients An.

Solution. a.
1

z − ζ
=

1

z(1 − ζ/z)
=

1

z

1

1 − ζ/z
.

Since |ζ/z| < 1 the last factor is a sum of a geometric series,

1

z − ζ
=

1

z

(

1 + ζ/z + (ζ/z)2 + (ζ/z)3 + · · ·
)

.

Ans.
1

z
+

ζ

z2
+

ζ2

z3
+ · · · .

b. Writing h as a sum, and therefore the integral as a sum (the series converges uniformly
on the circle |z| = 1/2) all the summand integrals vanish (they are integrals of derivatives
over a closed curve) except one to yield

√
11 =

1

2πi

∮

|z|=1/2

A2 z2

z3
dz = A2 .



5. (3+1 points). A function k(z) is analytic on a neighborhood of the closed disk {|z| ≤ 1}.
The image by k of the circle |z| = 1 is the following curve covered once.

.
0

w
.

.
v

u

a. How many roots does the equation k(z) = u, k(z) = v, and, k(z) = w have in the unit
disk |z| ≤ 1?

b. How do you know that the curve is traversed in the positive (counter clockwise) direction
as z goes around the unit circle in the positive sense.

Solution. a. The number of roots of k(z) = u is the number of zeroes of k(z) − u. Since
k has no poles the argument principal asserts that that number of zeroes is the number
of times that k(z)− u winds around the origin which is equal to the number of times that
k(z) winds around u which is zero.

The number of zeroes of k(z) = v is the number of times the curve winds about v, equals
two.

The number of zeroes of k(z) = w is the number of times the curve winds about w, equals
one.

b. The winding number around the origin is equal to the number of zeroes and is therefore
nonnegative.

If k were meromorphic, then the winding number would be Z − P and could be negative.



6. (8 points). Compute for positive real values of ω,

∫ ∞

−∞

cos ωx

4 + x2
dx .

Solution. The integral is absolutely convergent since the modulus of the integrand is
bounded by (4 + x2)−1 which is absolutely integrable. The answer is the real part of

∫ ∞

−∞

eiωx

4 + x2
dx = lim

R→∞

∫ R

−R

eiωx

4 + x2
dx .

Let

f(z) =
eiωz

4 + z2
=

eiωz

(z + 2i)(z − 2i)
=

eiωz

(z + 2i)

1

z − 2i
:= g(z)

1

z − 2i
. (0)

f(z) has poles at ±2i.

The function eiωz decays exponentially as Im z → +∞ (1 point).

Denote by CR the upper half of the semicircle |z| = R traversed in the counter clockwise
sense. The residue theorem applied to the half disk capped by CR mplies that for R > 2,

∫ R

−R

eiωx

4 + x2
dx +

∫

CR

eiωz

4 + z2
dz = 2πi Resz=2i

(

eiωz

4 + z2

)

. (3 points) (1)

The factor g(z) in (0) is analytic on a neighborhood of 2i so the pole is simple with

Resz=2i

(

eiωz

4 + z2

)

= g(2i) =
eiω(2i)

(2i + 2i)
=

e−2ω

4i
. (2 points)

On the curve CR,

|eiωz| ≤ 1, and

∣

∣

∣

∣

1

4 + z2

∣

∣

∣

∣

≤ 1

R2 − 4
.

Thus the integral over CR, whose length is πR, is no larger than

πR

R2 − 4
→ 0 as R → ∞ . (1 point)

Passing to the limit R → ∞ in (1) implies that

∫ ∞

−∞

eiωx

4 + x2
dx = 2πi

e−2ω

4i
=

π e−2ω

2
. (1 point)

The answer is the real part of this number, hence πe−2ω/2.

When cos ωz is used without noticing its exponential divergence on CR, (5 points max.).



7. (8 points). Compute
∫ ∞

0

√
x

4 + x2
dx .

Solution. For R > 2 and 0 < ǫ << 1, use the thermometer contour C(ǫ, R) which starts
at the point on the circle |z| = R with y = iǫ and goes counter clockwise nearly all the
way around the circle of radius R to the point with y = −iǫ. The contour then descends
parallel to the x-axis to the point −iǫ. Then, goes around a circle of radius ǫ. Then mounts
parallel to the x-axis to return to the starting point. (1 point)

Use the function z1/2 =
√

r eiθ/2 with 0 < θ < 2π. This function is analytic on C \ [0,∞[.
The values of the square root for z just above the real axis converge to the positive square
root as the imaginary part tends to zero. The values for z just below the real axis converge
to the negative square root as the imaginary part increases to zero. The convergence is
uniform on bounded sets of the positive real axis [0∞[.

C(ǫ, R) encloses poles, at ±2i. The residue theorem yields,
∮

C(ǫ,R)

z1/2

4 + z2
dz = 2πi

(

Resz=2i

( z1/2

4 + z2

)

+ Resz=−2i

( z1/2

4 + z2

)

)

. (3 points) (1)

A computation as in problem 6, shows that the poles are simple and the residues are

Resz=2i

( z1/2

4 + z2

)

=
(2i)1/2

2i + 2i
=

1 + i

4i
, (2)

Resz=−2i

( z1/2

4 + z2

)

=
(−2i)1/2

−2i − 2i
=

1 − i

−4i
. (2 points) (3)

The continuity of the integrand at z = 0 shows that as ǫ → 0 the integral over the circular
arc of size ǫ tends to zero. The integral on the horizontal path above the axis converges to
∫ R

0

√
x (4+x2)−1 dx. For the horizontal path below the axis, the square root is mutliplied

by −1 and the direction of the integral is reversed. Using the two factors of −1 the limit

is also
∫ R

0

√
x (4 + x2)−1 dx. Therefore,

lim
ǫ→0

∮

C(ǫ,R)

z1/2

4 + z2
dz = 2

∫ R

0

√
x

4 + x2
dx +

∫

|z|=R

z1/2

4 + z2
dz . (1 point) (4)

On the circle of radius R the integrand is no larger than R1/2/(R2−4) so the integral over
the curve of length 2πR is no larger than 2πR3/2/(R2 − 4) → 0 as R → ∞. Therefore,

lim
R→∞

lim
ǫ→0

∮

C(ǫ,R)

z1/2

4 + z2
dz = 2 lim

R→∞

∫ R

0

√
x

4 + x2
dx = 2

∫ ∞

0

√
x

4 + x2
dx . (1 point)

Combining yieilds

2

∫ ∞

0

√
x

4 + x2
dx = 2πi

(1 + i

4i
+

1 − i

−4i

)

=
2πi

4i

(

(1 + i) − (1 − i)
)

= π .

Alternate Solution. Using the boundary of the upper half of the disk of radius R yields a
slightly shorter evaluation.



8. (6+4 points). Denote by S the open sector 0 < |z| < 1, 0 < arg z < π/4, where the
branch of the argument has values in ] − π, π[.

u=2

10

π/4

S

u=0

u=1

a. Find a conformal mapping of S to the upper half plane, Im z > 0.

b. Solve the Dirichlet problem

uxx + uyy = 0, in S,

with boundary values as indicated in the figure. If you did not get part a, you may denote
by G(z) such a conformal map and continue from there.

Application. If u is a steady state temperature, the gradient of u gives the heat current.
If v is the harmonic conjugate, also computed in a, then the level sets v = constant give
the lines of heat flow.

Solution. a. Denote the vertices 0, 1, eiπ/4 as A, B, C. We will keep track of them
throughout. The map z → z4 maps to the unit upper half disk with A, B, C going to
0, 1,−1.

S

−1 0

AC B

1

S

The map z → z + 1 yields

S

1 2C

A B

The map z → 1/z yields,



C

C

S

0.5
B

1
A

Next map z → z − 1/2,

S

C

B A

C

0 0.5

Then z → z2

0

0.25
A

B
CC

S S

The map z → −z completes the construction.

b. Denote by F (z) that maps to the lower half plane in the last diagram. In S use the
three harmonic functions

θ1 = arg(z − 0.25), 0 ≥ θ1 ≥ −π, θ2 = arg(z), 0 ≥ θ2 ≥ −π, and, 1 .

Write u = a · 1 + bθ1 + cθ2. The boundary condition u = 1 on AC yields

1 = a + b · 0 + c · 0, so, a = 1 .

The boundary condition u = 0 on AC yields

0 = a + b · 0 + c · (−π), so, c = 1/π .

The boundary condition u = 2 on BC yields

2 = a + b(−π) + c(−π), so, b = −2/π .

This determines u. The solution of the boundary value problem is equal to u(F (z)).

Alternate endgame. If you forget the two angle strategy, you can solve Dirichlet problems

with two boundary values using a dictionary using one angle and the constants. You can
solve the problem with boundary values 0, 1, 2 on the three segments by writing the values
as the sum of 0, 1, 1 and 0, 0, 1 each of which has only two values.


