\qquad

Final Exam Solutions and Grading Scheme. December 20, 2009
Instructions. 1. Closed book. Four sides of a $3.5 \mathrm{in} . \times 5 \mathrm{in}$. sheet of notes from home.
2. No electronics, phones, cameras, ...etc.
3. Show work and explain clearly.
4. There are 8 questions. The last three problems are long! 53 points total.

1. $(2+2+2$ points). a. Let Γ be the straight line segment connecting $z=0$ to $z=1+i$. Compute

$$
\int_{\Gamma} x d z
$$

b. For $|\zeta|<1$ compute

$$
\frac{1}{2 \pi i} \oint_{|z|=1} \frac{\sin z}{(z-\zeta)^{n+1}} d z
$$

c. For $|\zeta|>1$ compute the integral in part \mathbf{b}.

Solution. a. Parameterize as $z(t)=t(1+i)=x(t)+i y(t), 0 \leq t \leq 1$. Then $x(t)=t$ and $d z / d t=1+i$. The definition of line integral yields,

$$
\int_{0}^{1} x(t) \frac{d z(t)}{d t} d t=\int_{0}^{1} t(1+i) d t=(1+i) \int_{0}^{1} t d t=\frac{(1+i)}{2}
$$

b. The Cauchy Integral Formula shows that this is equal to

$$
\left.\frac{1}{n!} \frac{d^{n}(\sin z)}{d z^{n}}\right|_{z=\zeta}
$$

c. In this case the integrand is analytic in the disk and Cauchy's Theorem implies that the integral is equal to zero.
2. $(2+2+2$ points). The function $H(z)$ is analytic on the disk $\{|z|<\rho\}$ with $H(0)=0$ and $H(0.01)=.02(1+i)$.
a. Compute an approximate value for $H^{\prime}(0)$.
b. Compute an approximate value for $H(0.01 i)$.
c. The function $\gamma(z)$ is analytic in $\{|z|<1\}$ with Taylor expansion at the origin equal to

$$
\gamma(z)=z^{m}+\text { higher order terms }, \quad m \geq 2
$$

Describe in words the image by γ of a small circle $|z|=\rho \ll 1$.
Solution. a. An approximate value of the derivative is given by the difference quotient,

$$
H^{\prime}(0) \approx \frac{H(0.01)-H(0)}{0.01-0}=\frac{.02(1+i)}{.01}=2(1+i)
$$

b.

$$
H(0.01 i) \approx H(0)+0.01 i H^{\prime}(0) \approx 0+2(1+i)(0.01)=.02(1+i)
$$

c. Parameterize the circle as $\rho e^{i \theta}$ then

$$
\gamma \approx \rho^{m} e^{i m \theta}
$$

so the image is a contour that winds m times around the origin in the clockwise direction not deviating far from the circle of radius ρ^{m} traversed at constant angular velocity.
3. $(3+3$ points). a. Compute

$$
\operatorname{Res}_{z=0} \frac{1}{z \sin z}
$$

b. Compute

$$
\operatorname{Res}_{z=\pi} \frac{1}{z \sin z}
$$

Solution. a.

$$
\frac{1}{\sin z}=\frac{1}{z-z^{3} / 6+\cdots}=\frac{1}{z} \frac{1}{1-z^{2} / 6+\cdots}=\frac{1}{z}\left(1+z^{2} / 6+\cdots\right) .
$$

So,

$$
\frac{1}{z \sin z}=\frac{1}{z^{2}}\left(1+z^{2} / 6+\cdots\right)
$$

The residue at $z=0$ is equal to zero.
b. At $z=\pi, \sin z$ vanishes with derivative equal to -1 so

$$
\sin z=-(z-\pi)+\cdots, \quad \frac{1}{z}=\frac{1}{\pi}+\cdots
$$

Therefore

$$
\frac{1}{z \sin z}=\left(\frac{1}{\pi}+\cdots\right) \frac{1}{-(z-\pi)+\cdots}=\left(\frac{1}{\pi}+\cdots\right) \frac{-1}{z-\pi} \frac{1}{1+\cdots}
$$

The residue at $z=\pi$ is equal to $-1 / \pi$.
4. $(3+2$ points). a. Find three nonzero terms of the Laurent expansion of the function

$$
g(z)=\frac{1}{z-\zeta}, \quad \zeta \neq 0
$$

in the region $|z|>|\zeta|$.
b. The function $h(z)$ is analytic in the punctured disk $0<|z|<1$ with Laurent expansion

$$
h(z)=\sum_{n=-\infty}^{\infty} A_{n} z^{n} .
$$

In addition one has

$$
\frac{1}{2 \pi i} \oint_{|z|=1 / 2} \frac{h(z)}{z^{3}} d z=\sqrt{11} .
$$

Find the value of one of the coefficients A_{n}.

Solution. a.

$$
\frac{1}{z-\zeta}=\frac{1}{z(1-\zeta / z)}=\frac{1}{z} \frac{1}{1-\zeta / z} .
$$

Since $|\zeta / z|<1$ the last factor is a sum of a geometric series,

$$
\frac{1}{z-\zeta}=\frac{1}{z}\left(1+\zeta / z+(\zeta / z)^{2}+(\zeta / z)^{3}+\cdots\right)
$$

Ans.

$$
\frac{1}{z}+\frac{\zeta}{z^{2}}+\frac{\zeta^{2}}{z^{3}}+\cdots
$$

b. Writing h as a sum, and therefore the integral as a sum (the series converges uniformly on the circle $|z|=1 / 2$) all the summand integrals vanish (they are integrals of derivatives over a closed curve) except one to yield

$$
\sqrt{11}=\frac{1}{2 \pi i} \oint_{|z|=1 / 2} \frac{A_{2} z^{2}}{z^{3}} d z=A_{2}
$$

5. (3+1 points). A function $k(z)$ is analytic on a neighborhood of the closed disk $\{|z| \leq 1\}$. The image by k of the circle $|z|=1$ is the following curve covered once.

a. How many roots does the equation $k(z)=u, k(z)=v$, and, $k(z)=w$ have in the unit disk $|z| \leq 1$?
b. How do you know that the curve is traversed in the positive (counter clockwise) direction as z goes around the unit circle in the positive sense.

Solution. a. The number of roots of $k(z)=u$ is the number of zeroes of $k(z)-u$. Since k has no poles the argument principal asserts that that number of zeroes is the number of times that $k(z)-u$ winds around the origin which is equal to the number of times that $k(z)$ winds around u which is zero.
The number of zeroes of $k(z)=v$ is the number of times the curve winds about v, equals two.

The number of zeroes of $k(z)=w$ is the number of times the curve winds about w, equals one.
b. The winding number around the origin is equal to the number of zeroes and is therefore nonnegative.

If k were meromorphic, then the winding number would be $Z-P$ and could be negative.
6. (8 points). Compute for positive real values of ω,

$$
\int_{-\infty}^{\infty} \frac{\cos \omega x}{4+x^{2}} d x
$$

Solution. The integral is absolutely convergent since the modulus of the integrand is bounded by $\left(4+x^{2}\right)^{-1}$ which is absolutely integrable. The answer is the real part of

$$
\int_{-\infty}^{\infty} \frac{e^{i \omega x}}{4+x^{2}} d x=\lim _{R \rightarrow \infty} \int_{-R}^{R} \frac{e^{i \omega x}}{4+x^{2}} d x
$$

Let

$$
\begin{equation*}
f(z)=\frac{e^{i \omega z}}{4+z^{2}}=\frac{e^{i \omega z}}{(z+2 i)(z-2 i)}=\frac{e^{i \omega z}}{(z+2 i)} \frac{1}{z-2 i}:=g(z) \frac{1}{z-2 i} . \tag{0}
\end{equation*}
$$

$f(z)$ has poles at $\pm 2 i$.
The function $e^{i \omega z}$ decays exponentially as $\operatorname{Im} z \rightarrow+\infty$ (1 point).
Denote by C_{R} the upper half of the semicircle $|z|=R$ traversed in the counter clockwise sense. The residue theorem applied to the half disk capped by C_{R} mplies that for $R>2$,

$$
\begin{equation*}
\int_{-R}^{R} \frac{e^{i \omega x}}{4+x^{2}} d x+\int_{C_{R}} \frac{e^{i \omega z}}{4+z^{2}} d z=2 \pi i \operatorname{Res}_{z=2 i}\left(\frac{e^{i \omega z}}{4+z^{2}}\right) . \quad \text { (3 points) } \tag{1}
\end{equation*}
$$

The factor $g(z)$ in (0) is analytic on a neighborhood of $2 i$ so the pole is simple with

$$
\begin{equation*}
\operatorname{Res}_{z=2 i}\left(\frac{e^{i \omega z}}{4+z^{2}}\right)=g(2 i)=\frac{e^{i \omega(2 i)}}{(2 i+2 i)}=\frac{e^{-2 \omega}}{4 i} \tag{2points}
\end{equation*}
$$

On the curve C_{R},

$$
\left|e^{i \omega z}\right| \leq 1, \quad \text { and } \quad\left|\frac{1}{4+z^{2}}\right| \leq \frac{1}{R^{2}-4}
$$

Thus the integral over C_{R}, whose length is πR, is no larger than

$$
\begin{equation*}
\frac{\pi R}{R^{2}-4} \rightarrow 0 \quad \text { as } \quad R \rightarrow \infty \tag{1point}
\end{equation*}
$$

Passing to the limit $R \rightarrow \infty$ in (1) implies that

$$
\begin{equation*}
\int_{-\infty}^{\infty} \frac{e^{i \omega x}}{4+x^{2}} d x=2 \pi i \frac{e^{-2 \omega}}{4 i}=\frac{\pi e^{-2 \omega}}{2} \tag{1point}
\end{equation*}
$$

The answer is the real part of this number, hence $\pi e^{-2 \omega} / 2$.
When $\cos \omega z$ is used without noticing its exponential divergence on C_{R}, (5 points max.).
7. (8 points). Compute

$$
\int_{0}^{\infty} \frac{\sqrt{x}}{4+x^{2}} d x
$$

Solution. For $R>2$ and $0<\epsilon \ll 1$, use the thermometer contour $C(\epsilon, R)$ which starts at the point on the circle $|z|=R$ with $y=i \epsilon$ and goes counter clockwise nearly all the way around the circle of radius R to the point with $y=-i \epsilon$. The contour then descends parallel to the x-axis to the point $-i \epsilon$. Then, goes around a circle of radius ϵ. Then mounts parallel to the x-axis to return to the starting point.
(1 point)
Use the function $z^{1 / 2}=\sqrt{r} e^{i \theta / 2}$ with $0<\theta<2 \pi$. This function is analytic on $\mathbb{C} \backslash[0, \infty[$. The values of the square root for z just above the real axis converge to the positive square root as the imaginary part tends to zero. The values for z just below the real axis converge to the negative square root as the imaginary part increases to zero. The convergence is uniform on bounded sets of the positive real axis $[0 \infty[$.
$C(\epsilon, R)$ encloses poles, at $\pm 2 i$. The residue theorem yields,

$$
\begin{equation*}
\oint_{C(\epsilon, R)} \frac{z^{1 / 2}}{4+z^{2}} d z=2 \pi i\left(\operatorname{Res}_{z=2 i}\left(\frac{z^{1 / 2}}{4+z^{2}}\right)+\operatorname{Res}_{z=-2 i}\left(\frac{z^{1 / 2}}{4+z^{2}}\right)\right) \tag{3points}
\end{equation*}
$$

A computation as in problem 6 , shows that the poles are simple and the residues are

$$
\begin{gather*}
\operatorname{Res}_{z=2 i}\left(\frac{z^{1 / 2}}{4+z^{2}}\right)=\frac{(2 i)^{1 / 2}}{2 i+2 i}=\frac{1+i}{4 i} \tag{2}\\
\operatorname{Res}_{z=-2 i}\left(\frac{z^{1 / 2}}{4+z^{2}}\right)=\frac{(-2 i)^{1 / 2}}{-2 i-2 i}=\frac{1-i}{-4 i} . \quad(2 \text { points }) \tag{3}
\end{gather*}
$$

The continuity of the integrand at $z=0$ shows that as $\epsilon \rightarrow 0$ the integral over the circular arc of size ϵ tends to zero. The integral on the horizontal path above the axis converges to $\int_{0}^{R} \sqrt{x}\left(4+x^{2}\right)^{-1} d x$. For the horizontal path below the axis, the square root is mutliplied by -1 and the direction of the integral is reversed. Using the two factors of -1 the limit is also $\int_{0}^{R} \sqrt{x}\left(4+x^{2}\right)^{-1} d x$. Therefore,

$$
\begin{equation*}
\lim _{\epsilon \rightarrow 0} \oint_{C(\epsilon, R)} \frac{z^{1 / 2}}{4+z^{2}} d z=2 \int_{0}^{R} \frac{\sqrt{x}}{4+x^{2}} d x+\int_{|z|=R} \frac{z^{1 / 2}}{4+z^{2}} d z \tag{4}
\end{equation*}
$$

On the circle of radius R the integrand is no larger than $R^{1 / 2} /\left(R^{2}-4\right)$ so the integral over the curve of length $2 \pi R$ is no larger than $2 \pi R^{3 / 2} /\left(R^{2}-4\right) \rightarrow 0$ as $R \rightarrow \infty$. Therefore,

$$
\lim _{R \rightarrow \infty} \lim _{\epsilon \rightarrow 0} \oint_{C(\epsilon, R)} \frac{z^{1 / 2}}{4+z^{2}} d z=2 \lim _{R \rightarrow \infty} \int_{0}^{R} \frac{\sqrt{x}}{4+x^{2}} d x=2 \int_{0}^{\infty} \frac{\sqrt{x}}{4+x^{2}} d x . \quad \text { (1 point) }
$$

Combining yieilds

$$
2 \int_{0}^{\infty} \frac{\sqrt{x}}{4+x^{2}} d x=2 \pi i\left(\frac{1+i}{4 i}+\frac{1-i}{-4 i}\right)=\frac{2 \pi i}{4 i}((1+i)-(1-i))=\pi
$$

Alternate Solution. Using the boundary of the upper half of the disk of radius R yields a slightly shorter evaluation.
8. ($6+4$ points). Denote by S the open sector $0<|z|<1,0<\arg z<\pi / 4$, where the branch of the argument has values in $]-\pi, \pi[$.

a. Find a conformal mapping of S to the upper half plane, $\operatorname{Im} z>0$.
b. Solve the Dirichlet problem

$$
u_{x x}+u_{y y}=0, \quad \text { in } \quad S,
$$

with boundary values as indicated in the figure. If you did not get part a, you may denote by $G(z)$ such a conformal map and continue from there.

Application. If u is a steady state temperature, the gradient of u gives the heat current. If v is the harmonic conjugate, also computed in a, then the level sets $v=$ constant give the lines of heat flow.

Solution. a. Denote the vertices $0,1, e^{i \pi / 4}$ as A, B, C. We will keep track of them throughout. The map $z \rightarrow z^{4}$ maps to the unit upper half disk with A, B, C going to $0,1,-1$.

The map $z \rightarrow z+1$ yields

The map $z \rightarrow 1 / z$ yields,

Next map $z \rightarrow z-1 / 2$,

Then $z \rightarrow z^{2}$

The map $z \rightarrow-z$ completes the construction.
b. Denote by $F(z)$ that maps to the lower half plane in the last diagram. In S use the three harmonic functions

$$
\theta_{1}=\arg (z-0.25), \quad 0 \geq \theta_{1} \geq-\pi, \quad \theta_{2}=\arg (z), \quad 0 \geq \theta_{2} \geq-\pi, \quad \text { and, } \quad 1
$$

Write $u=a \cdot 1+b \theta_{1}+c \theta_{2}$. The boundary condition $u=1$ on $A C$ yields

$$
1=a+b \cdot 0+c \cdot 0, \quad \text { so }, \quad a=1
$$

The boundary condition $u=0$ on $A C$ yields

$$
0=a+b \cdot 0+c \cdot(-\pi), \quad \text { so }, \quad c=1 / \pi
$$

The boundary condition $u=2$ on $B C$ yields

$$
2=a+b(-\pi)+c(-\pi), \quad \text { so }, \quad b=-2 / \pi
$$

This determines u. The solution of the boundary value problem is equal to $u(F(z))$.
Alternate endgame. If you forget the two angle strategy, you can solve Dirichlet problems with two boundary values using a dictionary using one angle and the constants. You can solve the problem with boundary values $0,1,2$ on the three segments by writing the values as the sum of $0,1,1$ and $0,0,1$ each of which has only two values.

