
Math 555, Fall 2011 Prof. J. Rauch

Midterm Exam October 20, 2011

Instructions. 1. Closed book. Two sides of a 3.5in. × 5in. sheet of notes from home.
2. No electronics, phones, cameras, . . . etc.
3. Show work and explain clearly.
4. There are 7 questions. They consist of 14 short subquestions each worth 5 points.
70 points total. You have about 5.5 minutes per short question. Be efficient.

1. (5+5 points). i. For the function f(z) = 1/z compute f(1 + i) and f ′(1 + i).

ii. Find the local magnification factor and rotation angle of f at z = 1 + i.

Solution. i.

f(1 + i) =
1

1 + i
=

1

1 + i

1 − i

1 − i
=

1 − i

2
=

1√
2

e−π/4 .

f ′(z) =
−1

z2
, z = 1 + i =

√
2 eπ/4 ,

1

z
=

1√
2

e−π/4 , f ′(1 + i) = −1/2e−π/2 = i/2 =
1

2
eiπ/2 .

ii.

Magnification factor := |f ′(1 + i)| =
1

2
.

Rotation factor := arg f ′(1 + i)| =
π

2
.

Discussion. i. This question tests computational skill with complex numbers. ii. This tests the
geometric interpretation of the complex derivative.



2. (5+5 points). i. Let Γ denote the contour connecting (0, 0) to (1, 1) along the straight line
y = x. Use the definition of line integral evaluate

∫

Γ

|z|2 dz .

ii. If f(z) is an analytic function on an open connected set Ω. State clearly what ”independence
of path” has to do with antiderivatives of analytic functions on Ω.

Solution. i. Parameterize the curve. The simplest is z(t) = t + it for 0 ≤ t ≤ 1. Then

|z(t)|2 = t2 + t2 = 2t2 ,
dz

dt
= 1 + i .

The definition of line integrals dz yields

∫ 1

0

|z(t)|2 dz(t)

dt
dt =

∫ 1

0

2t2 (1 + i) dt =
2(1 + i)

3
.

ii. A function F on Ω is an antiderivative of the analytic function f when F ′ = f . If f has an
antiderivative and C is an arc in Ω with starting point P and endpoint Q then the fundamental
theorem of calculus asserts that

∫

C

f(z) dz = F (Q) − f(P )

so is independent of the path connecting P to Q. Thus independence of path is a necessary
condition for the existence of an antiderivative. This necessary sufficient is also sufficient.

Alternative shorter version. An analytic function f on Ω has an antiderivative in Ω if and only if
for arcs C in Ω,

∫

C
f(z) dz depends only on the endpoints of C and is independent of the path

joining the endpoints.



3. (5+5 points). i. Consider the function f(z) = (z − 1)3. At what point(s) z of the annulus
1 ≤ |z| ≤ 2 does the function |f(z)| attain its maximum? Find the maximum.

ii. If g(z) is analytic in the annulus and |g(z)| ≤ 10 for z in the annulus, give an upper bound on
the possible values of for g′(3/2).

Solution. i.

|f(z)| = |z − 1|3 = dist(z, 1)3

so the maximum is attained at the points of the annulus that are farthest from the point 1. There
is a unique such point, z = −2. For this point,

|f(−2)| = 33 = 27 .

The maximum value is 27.

Alternate more careful version. The triangle inequality implies that |z − 1| ≤ |z| + 1 so

|z − 1|3 ≤ (|z| + 1)3

with equality if and only if z is a nonpositive real number. In our domain, |z| ≤ 2 so 27 is an upper
bound. The bound is achieved at the unique negative real of length 2 that belongs to the annulus.

ii. Cauchy’s inequalities imply that if |g(z)| ≤ M for all z ∈ G then

|gn(z)| ≤ n! M

dist (z, ∂G)n
.

Use this estimate for z = 3/2 with distance 1/2 to the boundary of the annulus, M = 10, and
n = 1 to find

|g′(3/2)| ≤ 10

1/2
= 20 .



4. (5+5 points). Let D denote the disk of radius 2 and center at the origin. Denote by ∂D its
boundary.

i. Use a Cauchy integral theorem to evaluate

∮

∂D

(z − i)n ez dz

for integers n ≥ 0.

ii. Use a second Cauchy integral theorem to evaluate for n < 0.

You can check your answers using the Taylor series of ez, but these questions are about the integral

theorems.

Solution. i. For n ≥ 0 the function (z − i)nez is analytic throughout the disk D including
the boundary. By Cauchy’s theorem, the integral around the boundary of a domain on which a
function is analytic vanishes.

n ≥ 0 =⇒
∮

∂D

(z − i)n ez dz = 0 .

ii. For n < 0 use Cauchy’s integral formula for k ≥ 0

∮

∂R

f(z)

(z − w)k+1
dz =

2πif (k)(w)

k!
.

Take f(z) = ez, w = i, and k + 1 = |n| = −n so the left hand side is the desired integral. Then
k = −n − 1 and dkez/dzk = ez so

n < 0 =⇒
∮

∂D

(z − i)n ez dz =
2πi

k!

dkez

dzk

∣

∣

∣

∣

z=i

=
2πi

(−n − 1)!
ei .



5. (5+5 points). i. Use the inverse function theorem to show that the function f(z) = sin z is
invertible on a neighborhood of z = 2i.

ii. Find the largest open disk with center at z = 0 on which the Taylor series of (cos z)−1 converges.

Solution. i. The inverse function theorem asserts the local invertibility of an analytic function
on a neighborhood of each point z so that f ′(z) 6= 0. Therefore it suffices to show that f ′(2i) 6= 0.

Since f ′(z) = cos z it suffices to show that cos 2i 6= 0 We know that the roots of cos z = 0 are
exactly the points z = π/2 + πn with n ∈ Z. In particular cos 2i 6= 0 since all the roots are on the
real axis.

Alternatively compute

cos 2i =
ei(2i) + ei(−2i)

2
=

e−2 + e2

2
.

The numerator is the sum of two strictly positive reals therefore strictly postive. Therefore e2i > 0.

ii. Since cos 0 6= 0, g(z) := 1/ cos z is analytic on a neighborhood of the origin.

Taylor series of g converges on the largest open disk D with center at the origin on which g is
analytic. That is the largest such disk that does not contain a zero of cos z.

Since the zeros of cos z are the points π/2 + πn, the closest to the origin are ±π/2. Therefore the
radius of convergence of the Taylor series is equal to π/2.



6. (5+5 points). i. k(z) is analytic on the complement of the pair of points 0 and 1. Explain why
k has two Laurent series expansions in powers of zn, that is series centered at z = 0.

ii. Consider
1

2πi

∮

|z|=1/2

k(z)

z3
dz .

This integral evaluates which coefficient in which Laurent expansion?

i. The function k(z) is analytic in each of the two annulli

0 < |z| < 1 , and 1 < |z| < ∞ .

The second is degenerate in that the second radius is infinite. k(z) has two Laurent expansions,
one convergent in the first annullus and the second in the second annulus.

ii. Consider the Laurent expansion

k(z) =

n=∞
∑

n=−∞

cnzn , 0 < |z| < 1 .

uniformly convergent on compact subsets of 0 < |z| < 1. In particular k(z)/z3 has the uniformly
convergent expression

∑

n

cn zn−3

on |z| = 1/2.

Integrating yields
1

2πi

∮

|z|=1/2

k(z)

z3
dz =

1

2πi

∮

|z|=1/2

∑

n

cn zn−3 dz .

The uniform convergence justifies interchanging sum and integral to obtain

1

2πi

∮

|z|=1/2

k(z)

z3
dz =

1

2πi

∑

n

∮

|z|=1/2

cn zn−3 dz .

The integrals on the right all vanish except that with n = 2 yielding

1

2πi

∮

|z|=1/2

k(z)

z3
dz = c2 .



7. (5+5 points). i. Find the order of the pole of

f(z) =
sin z

(1 − cos z)2

at z = 0.

ii. If the pole has order m, find the coefficient of z−m in the Laurent expansion of f .

Solution. i. Expand numerator and denominator in Taylor series centered at z = 0,

sin z = z − z3

3!
+

z5

5!
· · ·

1 − cos z = 1 −
(

1 − z2

2!
+

z4

4!
· · ·

)

=
z2

2!
− z4

4!
· · ·

Factor the largest powers of z,

sin z = z
(

1 − z2

3!
+

z4

5!
· · ·

)

1 − cos z = z2
( 1

2!
− z2

4!
· · ·

)

,

(1 − cos z)2 = z4
(1

4
− z2

4!
· · ·

)

,

Therefore
sin z

(1 − cos z)2
=

1

z3

1 − z2

3!
+ z4

5!
· · ·

1
4 − z2

4! · · ·
:=

1

z3
h(z) .

Since h(z) is the quotient of two analytic functions, neither vanishing at the origin it follows that
h(z) is analytic in a neighborhood of 0. From the definition h(0) = 4. Therefore

sin z

(1 − cos z)2
=

1

z3

(

4 + c1z + c2z
2 + · · ·

)

.

The pole is of order 3.

ii. The coefficient of z−3 is 4.


