1. $189 / 21$.
2. Use the method of Homework 9, Problems 1,2 to evaluate

$$
\sum_{1}^{\infty} \frac{1}{1+n^{2}}
$$

Hints. Using a rectangle instead of a circle is a little easier.
3. Evaluate

$$
\int_{0}^{\infty} \frac{z^{1 / 3} \log z}{z^{2}+1} d z
$$

where both $z^{1 / 3}$ and the logarithm are positive and real on $] 0, \infty\left[\right.$. Ans. $\pi^{2} / 6$.
4. i. Find the image by the mapping $w=\sin z$ of the vertical half rays $\{x+i y: y \geq 0\}$ with $x=-\pi / 2, x=0$, and $x=\pi / 2$.
ii. Show that $\sin z$ is a one to one function on the strip $-\pi / 2<x<\pi / 2,0 \leq y \leq \infty$. Hint. Do i and ii with bare hands using $e^{i z}$.
iii. Use these two results to identify the image of the conformal map $w=\sin z$ of the strip from ii.
5. Find a conformal map from the sector $0<\arg z<\pi / 3$ to a disk of radius 1. The argument takes values in $]-\pi, \pi[$.
6. Find the image of the strip $0<y<1 /(2 c)$ under the transformation $w=1 / z$. Sketch the correspondence of the boundaries including orientations.
7. $122 / 25$.

