Math 555 Fall 2011
Homework 3
Due September 29

1. i. Suppose that $\Omega \subset \mathbb{C}$ is open, $f=u+i v: \Omega \rightarrow \mathbb{C}$ is analytic, $\underline{z}=\underline{x}+i \underline{y} \in \Omega$, and, $f^{\prime}(\underline{z}) \neq 0$. Show that both $\operatorname{grad} u(\underline{x}, \underline{y}) \neq 0$ and $\operatorname{grad} v(\underline{x}, \underline{y}) \neq 0$.
The Implicit Function Theorem then implies that each of the level curves

$$
\{(x, y): u(x, y)=u(\underline{x}, \underline{y})\} \quad \text { and }, \quad\{(x, y): v(x, y)=v(\underline{x}, \underline{y})\}
$$

are smooth curves near $(\underline{x}, \underline{y})$. For example, if $u_{y}(\underline{x}, \underline{y}) \neq 0$ then the IFT implies that the level set of u is locally a smooth graph $y=h(x)$ with h infinitely differentiable. (Here we use the fact that u and v are infinitely differentiable.)
ii. Show that the level curves $u=u(\underline{x}, \underline{y})$ and $v=v(\underline{x}, \underline{y})$ are orthogonal at \underline{z}. Hint. Show that the normal vectors to the level curves are orthogonal. Discussion. If you graph the system of level curves of u and those of v you have curves that intersect at right angles. They define an orthogonal local coordinate system.
2. Show that $e^{\bar{z}}$ is not analytic. Hint. $e^{x} e^{-i y}$.
4. i. Show that if $m \neq n$ are integers then

$$
\begin{equation*}
\int_{0}^{2 \pi} e^{i m \theta} e^{-i n \theta} d \theta=0 \tag{1}
\end{equation*}
$$

ii. With the same m, n evaluate

$$
\int_{C} z^{m} \bar{z}^{n} d z
$$

where C is the unit circle traversed in the positive sense.
Discussion. Identity (1) is important for Fourier series. It asserts that the functions $e^{i m \theta}$ and $e^{i n \theta}$ are orthogonal in the L^{2} scalar product on 2π periodic functions. The scalar product is defined as

$$
(g, h)=\int_{0}^{2 \pi} g(\theta) \overline{h(\theta} d \theta
$$

5. $73 / 9$.
6. $74 / 15$.
7. i. Suppose that $f:\{0<|z|<1\} \rightarrow \mathbb{C}$ is analytic on the punctured unit disk. If $C=\left\{\left|z-z_{0}\right|=\rho\right\}$ is a circle in the punctured disc turning once about the origin in the positive sense, show that $\oint_{C} f(z) d z$ is equal to the integral of $f d z$ about the postively oriented circle $|z|=r<1$ where r is so large that C lies entirely inside $|z|=r$. ii. Same question for C a rectangle turning once about the origin. Hint. Cauchy's Theorem.
