Math 555 Fall 2011 Homework 3 Due September 29

1. i. Suppose that $\Omega \subset \mathbb{C}$ is open, $f = u + iv : \Omega \to \mathbb{C}$ is analytic, $\underline{z} = \underline{x} + i\underline{y} \in \Omega$, and, $f'(\underline{z}) \neq 0$. Show that both grad $u(\underline{x}, \underline{y}) \neq 0$ and grad $v(\underline{x}, \underline{y}) \neq 0$.

The Implicit Function Theorem then implies that each of the level curves

$$\left\{ (x,y) : u(x,y) = u(\underline{x},\underline{y}) \right\} \quad \text{and}, \quad \left\{ (x,y) : v(x,y) = v(\underline{x},\underline{y}) \right\}$$

are smooth curves near $(\underline{x}, \underline{y})$. For example, if $u_y(\underline{x}, \underline{y}) \neq 0$ then the IFT implies that the level set of u is locally a smooth graph y = h(x) with h infinitely differentiable. (Here we use the fact that u and v are infinitely differentiable.)

ii. Show that the level curves $u = u(\underline{x}, \underline{y})$ and $v = v(\underline{x}, \underline{y})$ are orthogonal at \underline{z} . Hint. Show that the normal vectors to the level curves are orthogonal. Discussion. If you graph the system of level curves of u and those of v you have curves that intersect at right angles. They define an orthogonal local coordinate system.

2. Show that $e^{\overline{z}}$ is not analytic. **Hint.** $e^{x}e^{-iy}$.

4. i. Show that if $m \neq n$ are integers then

$$\int_0^{2\pi} e^{im\theta} e^{-in\theta} d\theta = 0.$$
 (1)

ii. With the same m, n evaluate

$$\int_C z^m \ \overline{z}^n \ dz$$

where C is the unit circle traversed in the positive sense.

Discussion. Identity (1) is important for Fourier series. It asserts that the functions $e^{im\theta}$ and $e^{in\theta}$ are orthogonal in the L^2 scalar product on 2π periodic functions. The scalar product is defined as

$$(g,h) = \int_0^{2\pi} g(\theta) \ \overline{h(\theta)} \ d\theta$$

5. 73/9.

6. 74/15.

7. i. Suppose that $f : \{0 < |z| < 1\} \to \mathbb{C}$ is analytic on the punctured unit disk. If $C = \{|z - z_0| = \rho\}$ is a circle in the punctured disc turning once about the origin in the positive sense, show that $\oint_C f(z) dz$ is equal to the integral of f dz about the postively oriented circle |z| = r < 1 where r is so large that C lies entirely inside |z| = r. ii. Same question for C a rectangle turning once about the origin. Hint. Cauchy's Theorem.