
Math 555 Fall 2011 Prof. J. Rauch
Homework 4 Due October 6

1. 153/25.

2. 75/21.

3. 75/25.

4. 74/13.

5. If f(z) is analytic on a neighborhood of z = 0 show that
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Discussion. This shows that the Taylor series of f at the origin in the sense of complex
analysis is identical to the Taylor series as an infinitely differentiable function of x, y.

6. i. Use the known value of
∫
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e−x2/2 dx and a change of variables to derive a formula

for
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e−ax2/2 dx for a > 0.

ii. Derive formulas for
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x e−x2/2 dx , and,
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x2 e−x2/2 dx ,

by differentiating with respect to a. Hint. Leibniz’ rule.

7. Let S denote the square with vertices at ±1 and ±i. For each of the following analytic
functions, find the points of S where |f(z)| attains its maximum values.

a. f(z) = sin z , b. f(z) = ez , c. f(z) =
1

z − (1 + i)
.

Discussion. These are all examples illustrating the maximum modulus principal.


