1. $153 / 25$.
2. $75 / 21$.
3. $75 / 25$.
4. $74 / 13$.
5. If $f(z)$ is analytic on a neighborhood of $z=0$ show that

$$
\frac{f^{(n)}(0)}{n!} z^{n}=\sum_{j+k=n} \frac{\partial^{j} \partial^{k} f(0)}{\partial x^{j} \partial y^{k}} \frac{x^{j} y^{k}}{j!k!}
$$

Discussion. This shows that the Taylor series of f at the origin in the sense of complex analysis is identical to the Taylor series as an infinitely differentiable function of x, y.
6. i. Use the known value of $\int_{-\infty}^{\infty} e^{-x^{2} / 2} d x$ and a change of variables to derive a formula for $\int_{-\infty}^{\infty} e^{-a x^{2} / 2} d x$ for $a>0$.
ii. Derive formulas for

$$
\int_{-\infty}^{\infty} x e^{-x^{2} / 2} d x, \quad \text { and }, \quad \int_{-\infty}^{\infty} x^{2} e^{-x^{2} / 2} d x
$$

by differentiating with respect to a. Hint. Leibniz' rule.
7. Let S denote the square with vertices at ± 1 and $\pm i$. For each of the following analytic functions, find the points of S where $|f(z)|$ attains its maximum values.
a. $f(z)=\sin z$,
b. $f(z)=e^{z}$,
c. $f(z)=\frac{1}{z-(1+i)}$.

Discussion. These are all examples illustrating the maximum modulus principal.

