\qquad

Final Exam, December 19, 2013
Instructions. 1. Closed book. Two $3.5 \mathrm{in} . \times 5 \mathrm{in}$. sheet (four sides) of notes from home.
2. No electronics, phones, cameras, ...etc.
3. Show work and explain clearly.
4. There are 9 questions on 9 pages. 50 points total.

1. (5 points). Suppose that $\mathcal{R} \subset \mathbb{C}$ is a nice bounded domain with boundary oriented in the standard way. Show that

$$
\oint_{\partial \mathcal{R}} x d z=i \operatorname{Area}(\mathcal{R})
$$

Hint. This tests the derivation of Cauchy's Theorem.
Solution. Green's Theorem that asserts that

$$
\oint_{\partial \mathcal{R}} P(x, y) d x+Q(x, y) d y=\iint_{\mathcal{R}} \frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y} d x d y .
$$

Write $x d z=x(d x+i d y)$ and apply the formula with $P=x, Q=i x$ to find

$$
\oint_{\partial \mathcal{R}} x d z=\iint_{\mathcal{R}} i d x d y=i \operatorname{Area}(\mathcal{R})
$$

2. (4 points). Is there a nonempty open disk D on which the function

$$
\left(\frac{x^{2}}{2}+x y\right)+i\left(x y+\frac{y^{2}}{2}\right)
$$

is analytic?
Solution. The Cauchy-Riemann equations assert that $f_{x}+i f_{y}=0$ for analytic functions. Compute

$$
\frac{\partial f}{\partial x}=(x+y)+i y, \quad \frac{\partial f}{\partial y}=x+i(x+y)
$$

Therefore

$$
\frac{\partial f}{\partial x}+i \frac{\partial f}{\partial y}=0+i(x+y)
$$

This vanishes only on the line $x+y=0$ and therefore on no nonempty open disk.
Discussion. The Cauchy-Riemann equations at a point don't yield anything. Analyticity at a point means in a disk with center at the point.
3. $(4+2$ points). i. Define with integer $n \geq 1$,

$$
g(z):=z^{n}+\frac{1}{z-i} .
$$

For $R>2$, how many times does the image by $g(z)$ of the circle $\{|z|=R\}$ wind around the origin in the positive sense? Explain.
ii. How many roots z of $g(z)=0$ are there in the complex plane?

Solution. i. On $|z|=R>1$ one has

$$
\left|z^{n}\right|=R^{n}, \quad|1 /(z-i)| \leq 1 /(R-1) .
$$

For $R>2$ the first is strictly larger than the second.
The dog on a leash principal implies that the image by g winds that same number of times as the image by z^{n}. The image by z^{n} winds n times. Ans. $=n$.
ii. The argument principal asserts that this winding number is equal to the number of zeroes minus the number of poles.

There is one simple pole at $z=i$. Therefore

$$
n=\text { number of zeros }- \text { number of poles }=\text { number of zeros }-1
$$

There are $n+1$ zeros.
Alternate. $p(z):=(z-i) g(z)=(z-i) z^{n}+1$ is a polynomial of degree $n+1$ so has exactly $n+1$ roots.
Since $p(i)=1 \neq 0$ it follows that p has exactly $n+1$ roots in $\mathbb{C} \backslash i$. Therefore g also has $n+1$ roots in $\mathbb{C} \backslash i$. Since i is not a root of g this counts the roots of g. Note the care needed to treat the danger of division by zero when passing from p to g.
4. ($2+2$ points). Define $\arg (z)$ in the slit plane $\mathbb{C} \backslash]-\infty, 0]$ by $-\pi<\arg (z)<\pi$. Define the analytic $\ln (z)=\ln |z|+i \arg (z)$ on the slit plane. Then $G(z):=\ln (z)-i \pi$ is analytic in the quadrant $\{z=x+i y: x<0, \quad 0<y\}$. G is continuous up to the boundary of the quadrant on the x-axis with real values there.

i. By what formula does $G(z)$ continue analytically to the left half plane $\{x<0\}$?
ii. Compute the value of the continuation $G(-1-i)$.

Solution. i. In the left half plane the values of $G(z)$ in $\operatorname{Im} z<0$ are computed from the values in $\operatorname{Im} z>0$ from the formula

$$
G(z)=\overline{G(\bar{z})} .
$$

This identity then holds throughout the left half plane.
ii. Compute

$$
\begin{aligned}
\overline{G(-1-i)} & =\overline{G(\overline{-1+i})}=G(-1+i) \\
& =\ln (-1+i)-i \pi=((\ln \sqrt{2})+i 3 \pi / 4)-i \pi \\
& =\ln \sqrt{2}-i \pi / 4 .
\end{aligned}
$$

Therefore $G(-1-i)=\ln \sqrt{2}+i \pi / 4$.
5. (6 points). Evaluate

$$
\oint_{|z-3|=1} \frac{\cos z}{\sin z} d z
$$

Solution. The sin function in the denominator has simple zeros at the points $z=n \pi$ for integer n. The cos in the numerator does not vanish at these points so they are simple poles of $\cos z / \sin z$.
The contour encloses only the pole at $z=\pi$. The residue theorem implies that

$$
\oint_{|z-3|=1} \frac{\cos z}{\sin z} d z=2 \pi i \operatorname{Res}(\cos z / \sin z, z=\pi) .
$$

Since $\cos \neq 0$ at the simple poles, the residue is given by the value of $\cos (z) / \sin ^{\prime}(z)$ evaluated at $z=\pi$. Since $\sin ^{\prime}=\cos$, the residue is equal to 1 .
Ans. $2 \pi i$.
Alternate. The residue can be computed by expanding cos and sin in Taylor series about $z=\pi$. Those series are quickly computed using

$$
\begin{aligned}
& \cos z=\cos ((z-\pi)+\pi)=-\cos (z-\pi)=-\left(1-\frac{(z-\pi)^{2}}{2!}+\cdots\right) \\
& \sin z=\sin ((z-\pi)+\pi)=-\sin (z-\pi)=-\left((z-\pi)-\frac{(z-\pi)^{3}}{3!}+\cdots\right) .
\end{aligned}
$$

6. (8 points). Evaluate exactly

$$
\int_{-\infty}^{\infty} \frac{x^{2}}{1+x^{4}} d x
$$

You may leave the answer as a complicated algebraic expression in complex numbers.
Solution. The function

$$
f(z)=\frac{z^{2}}{1+z^{4}}
$$

has poles at the roots of the denominator that are the fourth roots of $-1,(\pm 1 \pm i) / \sqrt{2}$. These poles are on the vertices of a square centered at the origin and sides parallel to the axes.
The integrand is infinitely differentiable on the x axis and for $|z|>1$,

$$
|f(z)| \leq \frac{|z|^{2}}{|z|^{4}-1}
$$

Thus the integral is absolutely convergent by comparison at $\pm \infty$ with the integral of $1 / x^{2}$. Apply the Residue Theorem to the open half disk $\mathcal{R}:=\{|z|<R, \quad \operatorname{Im} z>0\}$ with $R>1$.

The function f is analytiic in \mathcal{R} and on the boundary with the exception of isolated singularities at the poles $(\pm 1+i) / \sqrt{2}$. The Residue Theorem implies that

$$
\oint_{\partial \mathcal{R}} \frac{z^{2}}{1+z^{4}} d z=2 \pi i(\operatorname{Res}(f,(1+i) / \sqrt{2})+\operatorname{Res}(f,(-1+i) / \sqrt{2}))
$$

Take the limit $R \rightarrow \infty$. On the circular boundary of length πR one has $|f| \leq R^{2} /\left(R^{4}-1\right)$ so the integral over that boundary tends to zero. The integral over the part of the boundary on the x-axis converges to the desired integral so

$$
\text { Ans. }=2 \pi i(\operatorname{Res}(f,(1+i) / \sqrt{2})+\operatorname{Res}(f,(-1+i) / \sqrt{2}))
$$

Let $g(z)=z^{2}$ and $h(z)=1+z^{4}$. Since g is non zero and h has a simple zero at each of the poles the residue at a root ω of -1 is given by

$$
\frac{g(\omega)}{h^{\prime}(\omega)}=\frac{\omega^{2}}{4 \omega^{3}}=\frac{1}{4 \omega}=\frac{\bar{\omega}}{4},
$$

since $|\omega|=1$.
Therefore

$$
\text { Ans. }=\frac{2 \pi i}{4}\left(\frac{\overline{(1+i)}}{\sqrt{2}}+\frac{\overline{(-1+i)}}{\sqrt{2}}\right)=\frac{2 \pi i}{4} \frac{(-2 i)}{\sqrt{2}}=\frac{\pi}{\sqrt{2}} .
$$

7. (5 points). Define the argument to have values in $]-\pi, \pi[$. The sector with angular opening A is the set

$$
\{z: 0<\arg z<A\}, \quad 0<A<\frac{\pi}{2}
$$

A sketch follows.

Find a one to one conformal mapping from the sector to an open disk.
Solution. The mapping $z \mapsto z^{\pi / A}$ maps the sector to the upper half plane.
The mapping $z \mapsto 1 /(z-i):=k(z)$ maps the upper half plane to the inside of the circle that is the image of the real axis. That is a disk. That answers the question.

Continuing one could identify the circle by noting that it contains $0=k(\infty)$. And it contains the point $i=k(0)$. The mapping $k(z)$ preserves the imaginary axis. Since the imaginary axis is perpendicular to the x axis their images are also perpendicular. Therefore the circle is perpedicular to the imaginary axis. The circle is $D:=\{|z-(i / 2)|=1 / 2\}$ sketched below.

The mapping

$$
F(z)=\frac{1}{z^{\pi / A}-i}
$$

maps the sector conformally to the disk D.
8. (6 points). Find the unique bounded steady temperature distribution (a.k.a. harmonic function) in the postive quandrant $\{z=x+i y: x>0 \quad y>0\}$ with temperature equal to -3 on the strictly positive y-axis, and on the x-axis has teperatures equal to 0 on $] 0,1[$
and equal to 7 on the segment $] 1, \infty[$.

Solution. The map $z \mapsto z^{2}$ takes the quadrant problem to the correpsonding upper halfspace problem with boundary values sketched below.

Define the argument function to take values $0 \leq \arg \leq \pi$ in the upper half plane. Seek a solution of the form

$$
A \arg (z-0)+B \arg (z-1)+C .
$$

On the interval $] 1, \infty[$ the two args vanish and one finds that

$$
C=7 \text {. }
$$

On the interval $] 0,1[$ the first arg vanishes and one finds

$$
B \pi+C=0, \quad B=\frac{-7}{\pi} .
$$

On the interval] $-\infty, 0$ [one finds

$$
A \pi+B \pi+C=-3 \quad A=\frac{-3}{\pi}
$$

The solution of the halfspace problem is

$$
\frac{-3}{\pi} \arg (z-0)+\frac{-7}{\pi} \arg (z-1)+7 .
$$

A (and therefore the) solution of the quadrant problem is therefore

$$
\text { Ans. }=\frac{-3}{\pi} \arg \left(z^{2}-0\right)+\frac{-7}{\pi} \arg \left(z^{2}-1\right)+7
$$

For the problem 9 it may be useful to recall that $\left(z+z^{-1}\right) / 2$ is a conformal map from $\{\operatorname{Im} z>0, \quad|z|>1\}$ to the upper half space that leaves ± 1 fixed and maps the intervals $]-\infty,-1[$ and $[1, \infty[$ to themselves.
9. ($5+1$ points) i. Define the argument to have values in $]-\pi, \pi$ [and suppose that $0<B<\pi$ Find a nonzero irrotational incompressible flow in the region

$$
\Omega:=\{z: 0<\arg z<B, \quad 1<|z|<\infty\}
$$

with flow parallel to the boundary at all boundary points.
ii. If $G(z)=\phi+i \psi$ is the complex potential, it is true that one of ϕ, ψ is constant on the boundary. Which one and why?

Solution. i. The map $z \mapsto z^{\pi / B}$ maps the region to the part of the upper halfspace exterior to the unit disk.
The map $z \mapsto\left(z+z^{-1}\right) / 2$ maps this region to the upper half space.
Therefore the map

$$
H(z):=\left(\frac{z^{\pi / B}+z^{-\pi / B}}{2}\right)
$$

maps the sector to the upper half space.
The function z is the complex potential of flow in the upper half space that it tangent to the boundaries. Therefore $H(z)$ is the complex potential of a flow in Ω that is tangent to the boundaries. If $H=\phi+i \psi$ the velocity field of the irrotational incompressible flow is

$$
\nabla(\operatorname{Re} H)=\nabla \phi
$$

ii. The level sets of ψ are streamlines. So the boundary is level set of ψ when the boundary is connected.

Discussion. The velocity field constructed is not bounded. As in the Fluid Flow handout, one can show that there does not exist a bounded nonzero incompressible inrotational flow tangent to boundary.

