\qquad

Midterm Exam October 17, 2013

Instructions. 1. Closed book. Two sides of a $3.5 \mathrm{in} . \times 5 \mathrm{in}$. sheet of notes from home.
2. No electronics, phones, cameras, ... etc.
3. Show work and explain clearly.
4. There are 6 questions. They consist of 16 short subquestions each worth 5 points. 80 points total. You have about 5 minutes per short question. Be efficient.

1. (15 points). i. Find a polar form of the complex number $w=1+i$.
ii. If two students give correct answers $r_{1} e^{i \theta_{1}}$ and $r_{2} e^{i \theta_{2}}$, what can you say about the relation of the numbers r_{1}, r_{2}, θ_{1} and θ_{2} ?
iii. Find polar forms of $1 / w$ and \bar{w}.

Solution. i. The modulus of w is equal to $\sqrt{2}$ and an argument is $\pi / 4$ (45 degrees). A polar form is $w=\sqrt{2} e^{i \pi / 4}$.
ii. Both the r_{j} must be equal to $\sqrt{2}$ and $\theta_{1}-\theta_{2}$ must be an integer multiple of 2π.
iii. $1 / w=(1 / \sqrt{2}) e^{-i \pi / 4}$. $\bar{w}=\sqrt{2} e^{-i \pi / 4}$.
2. (25 points). The function $f(z)$ is analytic on a disk \mathbb{D} centered at the $z_{0}=2$, with Taylor series at the origin that begins with the three terms

$$
f(z)=1+e(z-2)+\pi(z-2)^{2}+\cdots .
$$

i. Find the local expansion factor and rotation for the mapping $f(z)$ at $z_{0}=2$.
ii. Find the first three terms of the Taylor series of $f(z)^{2}$ centered at z_{0}.
iii. Find the first three terms of the Taylor series of $1 / f(z)$ at $z_{0}=2$.
iv. Explain how you know that f is a one to one invertible map of a disk containing z_{0} to an open set containing $w_{0}=f\left(z_{0}\right)$.
v. Find the first three terms of the Taylor series at w_{0} of the inverse function $f^{-1}(w)$.
i. From the expansion read off $f^{\prime}(2)=e$. The local expansion factor is equal to $\left|f^{\prime}(2)\right|=e$. The local rotation is by the argument of $f^{\prime}(2)$, therefore zero.
ii.

$$
f(z) f(z)=\left(1+e(z-2)+\pi(z-2)^{2}+\cdots\right)\left(1+e(z-2)+\pi(z-2)^{2}+\cdots\right)
$$

Expand and collect terms of like powers yields for the first three terms

$$
1+2 e(z-2)+\left(e^{2}+2 \pi\right)(z-2)^{2}+\cdots
$$

Discussion. The first 25 points of this exam are VERY easy.
iii. Write

$$
\frac{1}{f(z)}=\frac{1}{1+e(z-2)+\pi(z-2)^{2}+\cdots}=\frac{1}{1+h(z)}
$$

with

$$
h(z):=e(z-2)+\pi(z-2)^{2}+\cdots
$$

Therefore

$$
\frac{1}{f}=1-h+h^{2}-h^{3}+\cdots
$$

Since h^{n} has lowest power $(z-2)^{n}$ it suffices to consider up to h^{2} to compute powers up to $(z-2)^{2}$. Compute

$$
h^{2}=\left(e(z-2)+\pi(z-2)^{2}+\cdots\right)\left(e(z-2)+\pi(z-2)^{2}+\cdots\right)=e^{2}(z-2)^{2}+\cdots
$$

Therefore

$$
\left.\frac{1}{f}=1-e(z-2)-\pi(z-2)^{2}\right)+e^{2}(z-2)^{2}+\cdots=1-e(z-2)+\left(-\pi+e^{2}\right)(z-2)^{2}+\cdots
$$

An alternate, and shorter method is to posit

$$
\frac{1}{f}=a_{0}+a_{1}(z-2)+a_{2}(z-2)^{2}+\cdots
$$

and determine the coefficients by setting
$1+0(z-2)+0\left(z_{2}\right)^{2}+\cdots=\left(a_{0}+a_{1}(z-2)+a_{2}(z-2)^{2}+\cdots\right)\left(1+2 e(z-2)+\left(e^{2}+2 \pi\right)(z-2)^{2}+\cdots\right)$.
The terms of order $0,1,2$ yield the trio of equations

$$
a_{0}=1, \quad a_{0} e+a_{1}=0, \quad a_{0} \pi+a_{2}+a_{1} e=0
$$

that determine a_{0}, a_{1}, a_{2}.
iv. Since $f^{\prime}(2)=e \neq 0$ the conclusion follows from the inverse function theorem.
v. Write $w=f(z), z=f^{-1}(w)$. Denote $g:=f^{-1}, w_{0}=f\left(z_{0}\right)=1$. Then

$$
g(f(z))=z
$$

for z in a neighborhood of 2 . Need $g\left(w_{0}\right), g^{\prime}\left(w_{0}\right), g^{\prime \prime}\left(w_{0}\right)$ to get the first three terms of the Taylor series of g at $w_{0}=1$. Plug in $z=z_{0}$ to get

$$
g\left(w_{0}\right)=z_{0}=2
$$

Differenitate with respect to z to find

$$
g^{\prime}(f(z)) f^{\prime}(z)=1
$$

Plug in $z=z_{0}$ to find

$$
\left.g^{\prime}\left(w_{0}\right)\right) f^{\prime}\left(z_{0}\right)=1
$$

Therefore, $g^{\prime}\left(w_{0}\right)=1 / e$. Differentiate a second time to find for all z near z_{0},

$$
g^{\prime \prime}(f(z)) f^{\prime}(z) f^{\prime}(z)+g^{\prime}(f(z)) f^{\prime \prime}(z)=0
$$

Use this identity at $z=z_{0}=2$. The value $f^{\prime \prime}(2)=\pi / 2$ follows from the Taylor series. Together with previously determined quantities this yields

$$
g^{\prime \prime}\left(w_{0}\right)=-2 \pi / e^{2}, \quad g(w)=2+(1 / e)(w-1)-\left(\pi / e^{2}\right)(w-1)^{2}+\cdots .
$$

3. (10 points). i. Determine the order of the poles of

$$
f(z)=\frac{z-1}{z^{3}-1} .
$$

ii. Find the first two terms of the Laurent expansion of

$$
g(z)=\frac{1}{z(z-1)}
$$

valid in the annulus $\{z:|z|>1\}$.
Solution. i. The poles can occur only at the roots of the denominator. The root $z=1$ of the denominator is evident by inspection. Long division yields

$$
z^{3}-1=(z-1)\left(1+z+z^{2}\right) .
$$

Thus

$$
f(z)=\frac{1}{1+z+z^{2}} .
$$

The denominator does not vanish at $z=1$ so $z=1$ is not a pole.
The quadratic formula shows that the denominator has two distinct simple roots

$$
z_{ \pm}=\frac{-1 \pm \sqrt{1-4}}{2}
$$

These are the cube roots of 1 other than 1 . Since the roots are simple and the numerator is nowhere vanishing, the points $z_{ \pm}$are simple poles.
ii. Find the Laurent expansion (in powers of z^{n}) of $1 /(z-1)$ valid in $|z|>1$. Then divide by z. To find the Laurent expansion, factor z in the denominator to find

$$
\frac{1}{z-1}=\frac{1}{z(1-(1 / z))}
$$

In $|z|>1$ one has $|1 / z|<1$ so the geometric series yields

$$
\frac{1}{1-(1 / z)}=1+\frac{1}{z}+\frac{1}{z^{2}}+\frac{1}{z^{3}}+\cdots
$$

The function f is $1 / z^{2}$ times this so for $|z|>1$,

$$
f=\frac{1}{z^{2}}+\frac{1}{z^{3}}+\frac{1}{z^{4}}+\cdots .
$$

4. (15 points). i. Evaluate

$$
\oint_{|z-i|=10} \cos \left(z^{2}\right)(\sin z)^{1001} d z .
$$

State clearly the theorem(s) you use.
ii. Evaluate

$$
\oint_{|z-i|=10} \frac{\cos (z)}{(z-i)^{1001}} d z
$$

State clearly the theorem(s) you use.
iii. Evaluate

$$
\oint_{|z|=10} \bar{z} d z
$$

where the circle is taken in the counterclockwise sense.
Solution. i. The integrand is analytic on \mathbb{C}. Cauchy's Theorem implies that for any domain R,

$$
\oint_{\partial R} \cos \left(z^{2}\right)(\sin z)^{1001} d z=0 .
$$

Applied to R equal to the disk $\{|z-i|<10\}$ yields the value 0 for the integral.
ii. If f is analytic in a region R as well as its boundary points then Cauchy's Integral Formula reads for all $z_{0} \in R$,

$$
f^{n}\left(z_{0}\right)=\frac{n!}{2 \pi i} \oint_{\partial R} \frac{f(z)}{\left(z-z_{0}\right)^{n+1}} d z
$$

Apply with

$$
f(z)=\cos (z), \quad n=1000, \quad R=\{|z|<10\}
$$

to find that the integral is equal to

$$
\left.\frac{2 \pi i}{1000!} \frac{d^{1000} \cos z}{d z^{1000}}\right|_{z=i}
$$

The $1000^{\text {th }}$ derivative of cos is equal to cos because 1000 is a multiple of 4 . So the integral is equal to

$$
\frac{2 \pi i}{1000!} \cos i
$$

Further simplification is possible.
iii. Parameterize $|z|=10$ by $\gamma(\theta)=10 e^{i \theta}$ with $0 \leq \theta \leq 2 \pi$. By definition the integral is equal to

$$
\int_{0}^{2 \pi} \overline{\gamma(\theta)} \frac{d \gamma(\theta)}{d \theta} d \theta
$$

Since $\gamma^{\prime}=10 i e^{i \theta}$ and $\bar{\gamma}=10 e^{-i \theta}$ this is equal to

$$
\int_{0}^{2 \pi} 10 e^{-i \theta} 10 i e^{i \theta} d \theta=100 i \int_{0}^{2 \pi} d \theta=200 \pi i
$$

5. (10 points). i. Find the image of the rectangle

$$
R:=\{0<\operatorname{Im} z<\pi, \quad 0<\operatorname{Re} z<1\} .
$$

by the function e^{z}.
ii. Denote by $h(z)$ the branch of $z^{1 / 2}$ defined in the slit plane $\left.\left.\mathbb{C} \backslash\right]-\infty, 0\right]$ by $h(1)=1$. Denote by \arg the branch of the argument in the same set defined by $\arg (1)=0$. Find the image by $h(z)$ of the sector

$$
\{.1<\arg (z)<.3, \quad 0<|z|<1\}
$$

Solution. i. For each $0<x<1$ consider the segment in R with real part equal to x. Its image is

$$
e^{(x+i y)}=e^{x} e^{i y}, \quad 0<y<\pi
$$

The second factor traces out the upper half of the unit circle. The first factor is a real number ranging from 1 as x approaches 0 to e when x approaches 1 .
As x varies these half circles sweep out the half annullus in the upper half plane between the circle of radius 1 and the circle of radius e.
ii. For each $.1<\theta<.3$ the part of the ray with polar angle θ that lies in R is mapped to the ray with polar angle $\theta / 2$ begining at the origin, the image of points near the origin, and ending with $r \rightarrow 1$ corresponding to the square roots of the points of modulus close to 1 .
These images sweep out the sector

$$
\{.1 / 2<\arg (z)<.3 / 2, \quad 0<|z|<1\} .
$$

6. (5 points). If v is a harmonic conjugate of u show that $-u$ is a harmonic conjugate of v.

Solution. Since v is a harmonic conjugate of u, the function $f:=u+i v$ is analytic. Therefore $-i f$ is analytic. Compute

$$
-i f=v-i u
$$

Therefore $-u$ is a harmonic conjugate of v.
Alternatively, one can verify the partial differential equations characterizing harmonic conjugates.
Virtually all the exam papers took the alternate route.

