
Math 555. Fall 2013. Prof. J. Rauch. NAME ....................................................

Midterm Exam October 17, 2013

Instructions. 1. Closed book. Two sides of a 3.5in.× 5in. sheet of notes from home.
2. No electronics, phones, cameras, . . . etc.
3. Show work and explain clearly.
4. There are 6 questions. They consist of 16 short subquestions each worth 5 points.
80 points total. You have about 5 minutes per short question. Be efficient.

1. (15 points). i. Find a polar form of the complex number w = 1 + i.

ii. If two students give correct answers r1e
iθ1 and r2e

iθ2 , what can you say about the relation of
the numbers r1, r2, θ1 and θ2?

iii. Find polar forms of 1/w and w.

Solution. i. The modulus of w is equal to
√

2 and an argument is π/4 (45 degrees). A polar form
is w =

√
2eiπ/4.

ii. Both the rj must be equal to
√

2 and θ1 − θ2 must be an integer multiple of 2π.

iii. 1/w = (1/
√

2)e−iπ/4. w =
√

2e−iπ/4.

2. (25 points). The function f(z) is analytic on a disk D centered at the z0 = 2, with Taylor series
at the origin that begins with the three terms

f(z) = 1 + e (z − 2) + π (z − 2)2 + · · · .

i. Find the local expansion factor and rotation for the mapping f(z) at z0 = 2.

ii. Find the first three terms of the Taylor series of f(z)2 centered at z0.

iii. Find the first three terms of the Taylor series of 1/f(z) at z0 = 2.

iv. Explain how you know that f is a one to one invertible map of a disk containing z0 to an open
set containing w0 = f(z0).

v. Find the first three terms of the Taylor series at w0 of the inverse function f−1(w).

i. From the expansion read off f ′(2) = e. The local expansion factor is equal to |f ′(2)| = e. The
local rotation is by the argument of f ′(2), therefore zero.

ii.

f(z) f(z) =
(

1 + e (z − 2) + π (z − 2)2 + · · ·
)(

1 + e (z − 2) + π (z − 2)2 + · · ·
)

Expand and collect terms of like powers yields for the first three terms

1 + 2e(z − 2) + (e2 + 2π)(z − 2)2 + · · · .

Discussion. The first 25 points of this exam are VERY easy.

iii. Write
1

f(z)
=

1

1 + e (z − 2) + π (z − 2)2 + · · ·
=

1

1 + h(z)
,



with
h(z) := e (z − 2) + π (z − 2)2 + · · · .

Therefore
1

f
= 1− h+ h2 − h3 + · · · .

Since hn has lowest power (z−2)n it suffices to consider up to h2 to compute powers up to (z−2)2.
Compute

h2 =
(
e (z − 2) + π (z − 2)2 + · · ·

)(
e (z − 2) + π (z − 2)2 + · · ·

)
= e2(z − 2)2 + · · · .

Therefore

1

f
= 1− e (z − 2)− π (z − 2)2) + e2(z − 2)2 + · · · = 1− e (z − 2) + (−π + e2)(z − 2)2 + · · · .

An alternate, and shorter method is to posit

1

f
= a0 + a1(z − 2) + a2(z − 2)2 + · · ·

and determine the coefficients by setting

1+0(z−2)+0(z2)2+· · · =
(
a0+a1(z−2)+a2(z−2)2+· · ·

)(
1 + 2e(z−2) + (e2 + 2π)(z−2)2 + · · ·

)
.

The terms of order 0, 1, 2 yield the trio of equations

a0 = 1 , a0e+ a1 = 0 , a0π + a2 + a1e = 0 ,

that determine a0, a1, a2.

iv. Since f ′(2) = e 6= 0 the conclusion follows from the inverse function theorem.

v. Write w = f(z), z = f−1(w). Denote g := f−1, w0 = f(z0) = 1. Then

g(f(z)) = z

for z in a neighborhood of 2. Need g(w0), g′(w0), g′′(w0) to get the first three terms of the Taylor
series of g at w0 = 1. Plug in z = z0 to get

g(w0) = z0 = 2 .

Differenitate with respect to z to find

g′(f(z))f ′(z) = 1 .

Plug in z = z0 to find
g′(w0))f ′(z0) = 1 .

Therefore, g′(w0) = 1/e. Differentiate a second time to find for all z near z0,

g′′(f(z))f ′(z)f ′(z) + g′(f(z))f ′′(z) = 0 .



Use this identity at z = z0 = 2. The value f ′′(2) = π/2 follows from the Taylor series. Together
with previously determined quantities this yields

g′′(w0) = −2π/e2 , g(w) = 2 + (1/e)(w − 1) − (π/e2)(w − 1)2 + · · · .

3. (10 points). i. Determine the order of the poles of

f(z) =
z − 1

z3 − 1
.

ii. Find the first two terms of the Laurent expansion of

g(z) =
1

z(z − 1)

valid in the annulus {z : |z| > 1}.

Solution. i. The poles can occur only at the roots of the denominator. The root z = 1 of the
denominator is evident by inspection. Long division yields

z3 − 1 = (z − 1)(1 + z + z2) .

Thus

f(z) =
1

1 + z + z2
.

The denominator does not vanish at z = 1 so z = 1 is not a pole.

The quadratic formula shows that the denominator has two distinct simple roots

z± =
−1±

√
1− 4

2
.

These are the cube roots of 1 other than 1. Since the roots are simple and the numerator is nowhere
vanishing, the points z± are simple poles.

ii. Find the Laurent expansion (in powers of zn) of 1/(z − 1) valid in |z| > 1. Then divide by z.
To find the Laurent expansion, factor z in the denominator to find

1

z − 1
=

1

z(1− (1/z))
.

In |z| > 1 one has |1/z| < 1 so the geometric series yields

1

1− (1/z)
= 1 +

1

z
+

1

z2
+

1

z3
+ · · · .

The function f is 1/z2 times this so for |z| > 1,

f =
1

z2
+

1

z3
+

1

z4
+ · · · .



4. (15 points). i. Evaluate ∮
|z−i|=10

cos(z2) (sin z)1001 dz .

State clearly the theorem(s) you use.

ii. Evaluate ∮
|z−i|=10

cos(z)

(z − i)1001
dz .

State clearly the theorem(s) you use.

iii. Evaluate ∮
|z|=10

z dz ,

where the circle is taken in the counterclockwise sense.

Solution. i. The integrand is analytic on C. Cauchy’s Theorem implies that for any domain R,∮
∂R

cos(z2) (sin z)1001 dz = 0 .

Applied to R equal to the disk {|z − i| < 10} yields the value 0 for the integral.

ii. If f is analytic in a region R as well as its boundary points then Cauchy’s Integral Formula
reads for all z0 ∈ R,

fn(z0) =
n!

2πi

∮
∂R

f(z)

(z − z0)n+1
dz .

Apply with
f(z) = cos(z) , n = 1000 , R = {|z| < 10}

to find that the integral is equal to

2πi

1000!

d1000 cos z

dz1000

∣∣∣∣
z=i

.

The 1000th derivative of cos is equal to cos because 1000 is a multiple of 4. So the integral is equal
to

2πi

1000!
cos i .

Further simplification is possible.

iii. Parameterize |z| = 10 by γ(θ) = 10 eiθ with 0 ≤ θ ≤ 2π. By definition the integral is equal to∫ 2π

0

γ(θ)
dγ(θ)

dθ
dθ .

Since γ′ = 10ieiθ and γ = 10e−iθ this is equal to∫ 2π

0

10e−iθ 10ieiθ dθ = 100i

∫ 2π

0

dθ = 200πi .



5. (10 points). i. Find the image of the rectangle

R :=
{

0 < Im z < π , 0 < Re z < 1
}
.

by the function ez.

ii. Denote by h(z) the branch of z1/2 defined in the slit plane C\]−∞, 0] by h(1) = 1. Denote by
arg the branch of the argument in the same set defined by arg(1) = 0. Find the image by h(z) of
the sector {

.1 < arg(z) < .3 , 0 < |z| < 1
}
.

Solution. i. For each 0 < x < 1 consider the segment in R with real part equal to x. Its image is

e(x+iy) = exeiy , 0 < y < π .

The second factor traces out the upper half of the unit circle. The first factor is a real number
ranging from 1 as x approaches 0 to e when x approaches 1.

As x varies these half circles sweep out the half annullus in the upper half plane between the circle
of radius 1 and the circle of radius e.

ii. For each .1 < θ < .3 the part of the ray with polar angle θ that lies in R is mapped to the ray
with polar angle θ/2 begining at the origin, the image of points near the origin, and ending with
r → 1 corresponding to the square roots of the points of modulus close to 1.

These images sweep out the sector{
.1/2 < arg(z) < .3/2 , 0 < |z| < 1

}
.

6. (5 points). If v is a harmonic conjugate of u show that −u is a harmonic conjugate of v.

Solution. Since v is a harmonic conjugate of u, the function f := u + iv is analytic. Therefore
−if is analytic. Compute

−if = v − iu .

Therefore −u is a harmonic conjugate of v.

Alternatively, one can verify the partial differential equations characterizing harmonic conjugates.
Virtually all the exam papers took the alternate route.


