Math 555, Fall 2013 Homework 10

J. Rauch Due November 19

- **1.** 189/21.
- 2. Use the method of Homework 8, Problems 1,2 to evaluate

$$\sum_{1}^{\infty} \frac{1}{1+n^2} \, .$$

Hints. Using a rectangle instead of a circle is a little easier.

3. Evaluate

$$\int_0^\infty \frac{z^{1/3} \log z}{z^2 + 1} \, dz \,,$$

where both $z^{1/3}$ and the logarithm are positive and real on $]0,\infty[$. **Ans.** $\pi^2/6$.

4. i. Find the image by the mapping $w = \sin z$ of the vertical half rays $\{x + iy : y \ge 0\}$ with $x = -\pi/2$, x = 0, and $x = \pi/2$.

ii. Show that $\sin z$ is a one to one function on the strip $-\pi/2 < x < \pi/2$, $0 \le y \le \infty$. Hint. Do i and ii with bare hands using e^{iz} .

iii. Use these two results to identify the image of the conformal map $w = \sin z$ of the strip from ii.

5. Find a conformal map from the sector $0 < \arg z < \pi/3$ to a disk of radius 1. The argument takes values in $]-\pi,\pi[$.

6. Find the image of the strip 0 < y < 1/(2c) under the transformation w = 1/z. Sketch the correspondence of the boundaries including orientations.

7. 122/25.