1. $150 / 8$. First four terms is sufficient.
2. $168 / 8$.
3. Consider the mapping $f(z)=z^{2}$. Denote by θ the polar angle with $-\pi<\theta<\pi$. Define two open domains,

$$
\Omega_{1}:=\left\{1<|z|<2, \quad \frac{-\pi}{2}<\theta<\frac{\pi}{6}\right\}, \quad \Omega_{2}:=\left\{1<|z|<2, \quad \frac{-\pi}{2}<\theta<\frac{4 \pi}{6}\right\} .
$$

a. Sketch the two domains.
b. Show using the Inverse Function Theorem that f is locally invertible with analytic inverse on a neighborhood of each point $z \neq 0$.
c. Show that f is a one to one invertible map of Ω_{1} onto its range, and that the inverse is analytic. Be sure to sketch the range.
d. Show that f is not a one to one map of Ω_{2} onto its range.

Discussion. These examples illustrate an important fact about learning mathematics. In order to understand theorems, one needs counterexamples that show why the hyptheses are needed and/or the conclusions are limited.
Such examples are part of the universal currency of mathematics, e.g. smooth functions with a point where all derivatives vanish, and, pointwise but not uniformly convergent sequences of functions, . . etc. Locally but not globally invertible maps belong on the list.
4. $167 / 4 \mathrm{c}$.
5. $167 / 4 \mathrm{e}$.
6. Find the singular parts of the Laurent expansions of

$$
f(z)=\frac{z}{1+z^{3}},
$$

at its poles. Use those results to deduce the partial fraction expansion. Hint. Handout on partial fractions. Save your work. This will be used in the next assignment.
7. Compute using residues

$$
\int_{0}^{\infty} \frac{1}{x^{4}+1} d x
$$

Ans. $\pi /(2 \sqrt{2})$.

