1. i. Show that the function $1 / \sin z$ has simple poles at the points $n \pi$ with residue equal to $\cos n \pi=(-1)^{n}$.
ii. Show that $\cos \pi z / \sin \pi z$ has poles at the integers n with residues equal to $1 / \pi$.
iii. Let C_{N} be the circle of radius $N+1 / 2$ with center equal to the origin. Show that

$$
\lim _{N \rightarrow \infty} \oint_{C_{N}} \frac{1}{z^{2}} \frac{\cos \pi z}{\sin \pi z} d z=0
$$

2. iv. Compute

$$
\operatorname{Res}\left(\frac{1}{z^{2}} \frac{\cos \pi z}{\sin \pi z}, 0\right) .
$$

v. Apply the Residue Theorem to compute $\sum_{n=1}^{\infty} 1 / n^{2}$.

Discussion. This is a broadly applicable method to sum infinite series using residues. It sums, for example, $\sum_{n=-\infty}^{\infty} P(n) / Q(n)$ for polynomials P, Q so that

- Q has no real roots,
- $\operatorname{deg} Q \geq \operatorname{deg} P+2$, and,
- one knows exactly the roots of Q.

The problem is a case where Q does have a root on real axis.
3. Use the result of problem 6 of Homework 7 whose solution is posted on my office door, to compute using antiderivatives,

$$
\int_{0}^{\infty} \frac{x}{1+x^{3}} d x
$$

Discussion. This is an example where the antiderivative works and the standard residue method does not. Warning. Be careful about branches of logarithms. You need them to be defined on the positive real axis.
4. Compute

$$
\int_{0}^{\infty} \frac{x \sin 2 x}{x^{2}+3} d x
$$

Ans. $(\pi / 2) e^{-2 \sqrt{3}}$.
Discussion. This integral is not absolutely convergent, but exists as an improper Riemannn integral.
5. Evaluate using residues

$$
\text { P.V. } \int_{-\infty}^{\infty} \frac{x^{3}+1}{x^{4}+1} d x
$$

Hint. The example in class where the degree of P is one lower that the degree of Q is a model.
6. $188 / 15$.
7. Exercise on Homework 1.

