Homework 9

Due November 12

1-2. $187 / 4$.

3. Prove the following result.

Theorem. If $p(z)$ is a polynomial of degree n,

$$
p(z)=a_{n} z^{n}+\cdots+a_{1} z+a_{0}, \quad a_{n} \neq 0
$$

then there is an $R>0$ so that for all w with $|w|>R$ the equation

$$
p(z)=w
$$

has n distinct roots.
Hints. i. Use Rouché's Theorem with $f=a_{n} z^{n}$. ii. You must choose your own contour(s). iii. Show that for large $w, f(z)=w$ has n simple roots far from each other. Show that $p(z)$ has nearby simple roots by choosing appropriate disks centered at the roots of f and showing that p has one root in each. iv. If you really want to optimize, try to see how close the solutions are to the solutions of $f(z)=w$. It is not hard to show that the distance between the roots of f and p is $\leq C$ for all $|w| \geq R$. You do not need to prove this sharper result.
4. If $c \in \mathbb{C}$ with $|c|>e$ show that the equation $c z^{n}=e^{z}$ has n roots counting multiplicity inside the unit circle.
5. Let Ω_{R} denote the part of the disk of radius R and center 0 belonging to the angular sector $0<\theta<2 \pi / 3$. Using the contour $\partial \Omega_{R}$ evaluate the integral

$$
\int_{0}^{\infty} \frac{1}{x^{3}+1} d x=\frac{2 \pi}{3 \sqrt{3}}
$$

Discussion. This shows that with cunning you can do some integrals that look like the residue method does not work. Also the example done with antiderivatives on the last assignment.
6. $190 / 23 \mathrm{a}$.
7. $190 / 23 \mathrm{~d}$.

