
J. Rauch Math 555 Fall 2009

Conformal Matrices

Abstract We analyse the elliptical image of spheres by linear transfor-
mations. We characterize those transformations which preserve lengths
(orthogonal matrices) and those that map spheres to spheres (conformal
matrices). The Jacobian matrices of analytic functions are conformal and
orientation preserving wherever they are invertible.

1 Transposes.

Denote the standard scalar product of vectors in R
n by

〈x , y〉 =
∑

xi yi .

Suppose that Aij is an n×n real matrix. The transpose At of A is defined
by

(At)ij := Aji .

The matrix of the transpose is the matrix of A flipped in the diagonal.

Example 1.1.
(

1 2
3 4

)t

=

(

1 3
2 4

)

.

Proposition 1.2. For all vectors x and y, n × n matrices A and B, and

real numbers α,

i. (A + B)t = At + Bt,

ii. (αA)t = αAt,

iii. (AB)t = BtAt,

iv. 〈Ax , y〉 = 〈x , Aty〉.

2 Length preserving linear transformations.

Theorem 2.1. If A is a real n×n matrix then the following are equivalent.

1. For all x, ‖Ax‖ = ‖x‖.
2. For all x, y, 〈Ax , Ay〉 = 〈x , y〉.
3. A is invertible and At = A−1.
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Definition 2.2. The matrices satisfying these equivalent conditions are

called orthogonal.

Proof. It suffices to prove 1. ⇒ 2. ⇒ 3. ⇒ 1.

(1. ⇒ 2.) Recall the algebraic identity for real numbers x and y,

xy =
(

(x + y)2 − (x − y)2
)

/4 .

Expanding as in elementary algebra shows that

〈x + y , x + y〉 = 〈x, x+〉 + 〈y, x + y〉
= 〈x, x〉 + 〈x, y〉 + 〈y, x〉 + 〈y, y〉
= 〈x, x〉 + 2〈x, y〉 + 〈y, y〉 ,

the last using the symmetry. Similarly

〈x− y , x− y〉 = 〈x, x〉 − 〈x, y〉 − 〈y, x〉+ 〈y, y〉 = 〈x, x〉 − 2〈x, y〉+ 〈y, y〉 ,

Subtracting proves the polarization identity,

〈x, y〉 =
(

〈x + y , x + y〉 − 〈x − y , x − y〉
)

/4 .

Property i. implies that the right hand side is equal to

〈A(x + y) , A(x + y)〉 − 〈A(x − y) , A(x − y)〉
4

.

Simplifying then using the polarization identity again yields,

〈Ax + Ay , Ax + Ay〉 − 〈Ax − Ay , Ax − Ay〉
4

= 〈Ax,Ay〉 .

This completes the proof that 〈x, y〉 = 〈Ax,Ay〉.
(2 ⇒ 3). Using 2 and Propoition 1.2.iv. shows that

〈x, y〉 = 〈Ax,Ay〉 = 〈AtAx , y〉 .

This shows that for all x, y,

〈(AtA − I)x , y〉 = 0 .

For each x this shows that (AtA− I)x is orthogonal to all y so must vanish.
The identity (AtA − I)x = 0 for all x is equivalent to At = A−1.

(3 ⇒ 1) Compute,

〈Ax,Ax〉 = 〈AtAx , x〉 = 〈x , x〉

where the last equality uses 3. This proves 1.
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3 Positive symmetric matrices.

Definition 3.1. A symmetric real matrix R is one for which Rij = Rji

for all i, j.

It is a fundamental fact that for every such matrix there is a real orthogonal
O so that O−1RO is a diagonal real matrix

O−1RO = diag
{

λ1, . . . , λn

}

. (3.1)

If e1, e2, . . . , en is the standard orthonormal basis for R
n then Oe1,Oe2, . . . ,Oen

is a new orthonormal basis consisting of eigenvectors of R with eigenvalues
λj .

Definition 3.2. A symmetric real R is positive when all the λj are strictly

positive.

The image by a positive symmetric R of the ball of radius 1 centered at the
origin is an n dimensional ellipsoid with axes of length 2λj in the directions
of the eigenvectors Oej .

Definition 3.3. For a positive symmetric R as in (3.1) the square root
√

R
is defined as √

R := O diag
{
√

λ1, . . . ,
√

λn

}

O−1.

The square root is symmetric, positive and satisfies (
√

R)2 = R.

Proof. Let D := diag
{
√

λ1, . . . ,
√

λn

}

. Compute

√
R

t
=

(

ODO−1
)t

= (O−1)tDtOt = ODO−1 =
√

R ,

the last using the fact that Ot = O−1 and D = Dt. For the square compute

(ODO−1)2 = ODO−1ODO−1 = OD2O−1.

That this is equal to R follows from the definition of D and (3.1).

It is not hard to show that there is only one such positive square root so the
definition is independent of the choice of O. 1

1If A is a matrix with A
2 = R, then AR = RA = A

3 so A commutes with R. If in
addition, A is symmetric then there is a possibly different orthogonal O which simultane-

ously diagonalizes A and R. Therefore both A and R are of the form O(diagonal)O−1. To
prove uniqueness it suffices to show that a positive diagonal matrix has a unique positive
diagonal square root. That is easy.
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4 Polar decomposition.

If M is invertible then M M t is symmetric since

(MM t)t = (M t)tM t = MM t.

For x 6= 0,

〈M M tx , x〉 = 〈M tx , M tx〉 = ‖M tx‖2 > 0 .

The fact that these expressions are all positive is equivalent to the positivity
of the matrix M M t.

Theorem 4.1. If M is an invertible n × n matrix then there are uniquely

determined positive symmetric R and orthogonal O so that M = RO. One

has

R =
√

MM t, and O = (
√

MM t)−1M . (4.1)

This is called the polar decomposition of the matrix.

Proof. If M = RO with positive R and orthogonal O, then

M M t = RO(RO)t = ROOt Rt = R2 ,

the last step because OOt = I and R = Rt. Thus (4.1) is the only possible
polar decomposition.

It remains to prove that this uniquely determined representation satisfies

the conditions. It suffices to verify that the matrix O :=
√

M M t
−1

M is
orthogonal, that is OtO = I. Compute,

OtO = (
√

M M t
−1

M)t R−1 M = M t
√

M M t
−1 √

M M t
−1

M .

Next use the easily proved fact that the inverse of the square root is the
square root of the inverse, so

√
M M t

−1 √
M M t

−1

=
√

(M M t)−1

√

(M M t)−1 = (M M t)−1 = (M t)−1 M−1 .

Inserting this in the preceding identity yields,

OtO = M t (M t)−1 M−1 M = I ,

completing the proof.

The polar representation allows one to describe precisely the images of
spheres and balls by linear transformations.
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Corollary 4.2. i. If M is an invertible matrix then the image by M of the

unit sphere is an ellipse whose principal axes have length 2λj where the λj

are the eigenvalues of R in the polar decomposition M = RO. The direction

of the axes are the corresponding eigendirections.

ii. The image is a sphere if an only if R = cI with c > 0 if and only if

M tM = c2I.

Proof. i. Since O is orthogonal it maps the unit sphere to itself. Then R
maps it to the ellipse with axes on eigendirections of R with length 2λj .

ii. The image is a sphere if and only if the λj are all equal. Call the common
value c. Then R = cI. Squaring this identity shows that it is equivalent to
M M t = c2I.

Definition 4.3. Matrices satisfying the equivalent conditions of ii. are

called conformal.

Problem. For the Jacobian computed in class

J =

(

2 1
2 −1

)

,

determine whether it maps circles to circles or to noncircular ellipses.

Solution. Compute

J J t =

(

2 1
2 −1

) (

2 2
1 −1

)

=

(

5 3
3 5

)

.

Since this is not a multiple of the identity, J maps circles to noncircular
ellipses. So the nonlinear map, maps small circles about (1, 1) to small
noncircular ellipses. The eigendirections of J J t give the axes of the ellipses.

This example shows that using the results of this handout is very easy!

Problem. Determine all conformal 2 × 2 matrices.

Solution. Write the matrix as

M =

(

a b
c d

)

.

It is conformal exactly when MM t is a multiple of the identity. Compute

MM t =

(

a b
c d

) (

a c
b d

)

=

(

a2 + b2 ac + bd
ac + bd c2 + d2

)

.
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The matrix is invertible and conformal if and only if

ac + bd = 0, a2 + b2 = c2 + d2.

The first condition asserts that (c, d) ⊥ (a, b). Since (a, b) is nonzero by
invertibility, this holds if and only if (c, d) is a multiple of (−b, a). The
second condition asserts that they have the same length. Therefore (c, d) =
±(−b, a) and the general solution is

(

a b
∓b ±a

)

, a2 + b2 > 0 . (4.2)

Example 4.4. If b = 0 and a > 0 the conformal matrices are

(

a 0
0 ±a

)

.

The first is a times the identity. The second a times reflection in the y-axis.
They both map circles to circles. The second reverses orientation.

Theorem 4.5. If M is linear and invertible from R
2 to itself then the fol-

lowing are equivalent.

1. M is conformal and orientation preserving.

2. There is a nonzero complex number α + βi so that the the image by M
of x + iy is equal to (α + iβ)(x + iy).

The only linear conformal orientation preserving maps of R
2 to itself are

given by multiplication by complex numbers.

Proof. The determinant of the matrix (4.2) is equal to ±(a2 + b2). So
the transformation is orientation preserving exactly when the determinant is
positive which is the case (c, d) = (−b, a). Thus, the most general orientation
preserving invertible conformal transformation is

(

a b
−b a

)

, a2 + b2 > 0 . (4.3)

Expanding
(α + iβ)(x + iy) = (αx − βy) + i(βx + αy)

shows that the matrix of the linear tranfsormation x+ iy 7→ (α+ iβ)(x+ iy)
is equal to (4.3) when α = a and β = −b. This proves the result.
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