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The Dirichlet Problem in the Disk

Summary. The Dirichlet Problem in the disk is solved two ways.
The first uses the real and imaginary parts of zn together with Fourier
series. The second constructs the Poisson kernel by exactly solving for
step data approaching Dirac’s delta. Conformal map to the upper half
plane to solve the step data problem.

1. Solution by Fourier series.

The Dirichlet problem in the disk asks to find a bounded harmonic
function u in the disk D := {|z| < 1} that assumes prescribed values
u(eiθ) = f(θ) on the boundary. The periodic function f is given.

The maximum principal for harmonic functions implies that there is at
most one such solution.

Complex function theory aids by providing many harmonic functions.
Since zn for n ∈ N is analytic its real and imaginary parts, rn cosnθ
and rn sinnθ are harmonic. Therefore by reflection in the x-axis,
rn cos(−nθ) and rn sin(−nθ), are also harmonic. Taking linear combi-
nations implies that the complex valued functions rneinθ and rn e−inθ

are harmonic for n ∈ N.

Therefore for complex cn that decay fast enough to guarantee conver-
gence,

u =
∞∑

n=−∞

cn r
|n| einθ (1.1)

is harmonic. The boundary values at r = 1 are given by the Fourier
series

∑
cn e

inθ.

Theorem 1.1. If f ∈ C∞periodic then the unique solution of the Dirichlet
problem is given by (1.1) with cn the Fourier coefficients of f ,

cn =
1

2π

∫ π

−π
f(θ) e−inθ dθ . (1.2)

Exercise 1.2. Consider the solution of the Dirichlet problem in D with
boundary value 1/(1 + ε sin θ) with |ε| < 1. Compute the first three
terms in the perturbation series

u ≈ u0(x, y) + εu1(x, y) + ε2u2(x, y) + · · · .
1
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2. The Poisson kernel.

The formulas (1.1) (1.2) yield

u =
1

2π

∫ π

−π

∑
n

r|n| einθ f(φ) e−inφ dφ .

Define the Poisson kernel

P (r, ψ) :=
1

2π

∑
n

r|n| einψ .

Then,

u(r, θ) =

∫ π

−π
P (r, θ − φ) f(φ) dφ . (2.1)

Compute P in two pieces, each a geometric series. With β := r eiψ,

∞∑
0

r|n| einψ =
∞∑
0

βn =
1

1− β
,

−1∑
−∞

r|n| einψ =
−1∑
−∞

βn =
∞∑
1

β
n

=
β

1− β
.

Adding yields

2πP =
1

1− β
+

β

1− β
=

(1− β) + β(1− β)

(1− β)(1− β)
=

1− r2

|1− β|2
=

1− r2

|1− r eiψ|2
.

(2.2)

3. The Poisson kernel from conformal mappling.

Compute P (r, ψ) by solving exactly the Dirichlet problem with bound-
ary data fε a sequence of step functions converging to the Dirac delta.
This follows the strategy used to compute the Poisson kernel for a half
space in the handout on the Dirichlet problem.

Take fε equal to 1/2ε on an interval of length 2ε centered at the point
1 on ∂D, and, fε = 0 outside this interval. Then (2.1) implies that if
uε is the solution one has P (r, ψ) = limε→0 uε(r, ψ).

To find uε map the Dirichlet problem in the disk to one in the upper
half space. Since the boundary datum is a step function the latter
problem is exactly solvable.

To map to the half space one can proceed in small steps and then
combine or can reason as follows.
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Exercise 3.1. Show that the fractional linear transformation F that
satisfies

F (1) = 0, F (−1) = ∞, F ′(1) = −i
is a one to one conformal map of D onto the upper half space. Hint.
First find the image of ∂D.

To find F start with the observation that the fractional linear trans-
formations satisfying F (1) = 0 and F (−1) = ∞ are of the form
F = C(z − 1)/(z + 1). The product rule for derivatives yields

F ′ = C
[
(z − 1)

d

dz

1

z + 1
+

1

z + 1

]
.

Setting z = 1 yields F ′(1) = C/2. Thus F ′(1) = −i if and only if
C = −2i so

F (z) = −2 i
z − 1

z + 1
. (3.1)

The image by F of the arc connecting e−iε to eiε on ∂D is the interval
[−wε, wε] on the x-axis where wε := F (eiε). Taylor expansion yields

wε = F
(
1 + iε+O(ε2)

)
= F (1) + F ′(1) iε+O(ε2)

= 0 + (−i)(iε) + O(ε2) = ε + O(ε2) .
(3.2)

Define gε to be the unique bounded harmonic function in the upper
half plane with boundary value equal to (2ε)−1χ[−wε,wε](x).1 Then the
exact solution uε is given by

uε(z) = gε(F (z)) . (3.3)

From the first handout on the Dirichlet problem, the solution gε is
given by

gε(w) =
arg(w − wε) − arg(w − (−wε))

2 π ε
. (3.4)

To compute the limit of uε we compute the limit of gε. Thanks to (3.2)

lim
ε→0

gε(w) =
1

−π
∂

∂x
argw =

1

−π
∂

∂x
Im lnw

=
1

−π
Im

∂

∂x
lnw =

1

−π
Im

∂

∂w
lnw =

1

−π
Im

1

w
. (3.5)

1Since gε is continuous in Im z > 0 and the boundary values are discontinuous,
the limy→0 gε(x, y) is not uniform. It is uniform on closed bounded subsets of
Rx \ {±wε}. Together with boundedness, that guarantees uniqueness. Similarly
limr→1 u

ε(r, θ) is uniform on closed bounded sets of θ in the complement of {±ε}.
With boundedness this implies uniqueness (see exercise 3.3 ).
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Therefore

lim
ε→0

gε(F (z)) =
1

−π
Im

1

F (z)
=

1

−π
Im

(
1

−2i

z + 1

z − 1

)
=

1

2π
Im

(
1

i

z + 1

z − 1

)
=
−1

2π
Re

(
z + 1

z − 1

)
. (3.6)

Therefore

P (r, ψ) =
−1

2π
Re

(
z + 1

z − 1

)
, z = r eiψ . (3.7)

Exercise 3.2. Verify that (3.7) agrees with (2.2).

Exercise 3.3. Prove the following uniqueness theorem.

Theorem 3.4. If u is a uniformly bounded harmonic function infinitely
differentiable on the open disk D so that for almost all θ in the sense
of Lebesgue measure2

lim
r→1

u(r eiθ) = 0 .

Then u is identically equal to zero on D.

Hints. For 0 < ρ < 1 define a smooth harmonic function on the closed
disk by

vρ(x, y) = u(ρ x, ρ y) , x+ iy = r eiφ .

Apply (2.2) to find

vρ(r e
iθ) =

∫ π

−π
P (r, θ − φ) u(ρ eiφ) dφ .

For x2 + y2 < 1 justify passage to the limit ρ→ 1 using the dominated
convergence theorem.

2Without using measure theory one has same conclusion under the stronger
hypothesis that one has uniform convergence on closed subsets of the complement
of a finite set {θ1, θ2 · · · , θN}. This hypothesis suffices to prove uniqueness of the
solutions uε.


