J. Rauch Applied Complex Analysis
Fluid Flows and Complex Analysis

Summary. Some classic and not so classic examples of incompressible,
irrotational, planar flows are presented. Uniqueness and boundedness
questions related to the examples are discussed using beautiful complex
variable methods. The latter are absent in traditional presentations.

1. SIMPLEST FLOWS.

For an incompressible irrotational velocity field (u(z,y),v(z,y)) the
function

f = u—1v
is analytic. On a simply connected fluid domain there is an analytic
antiderivative F' = ¢ + 17 with

F = f.

F' is called a complex potential. The Cauchy-Riemann equations
show that ¢ is a velocity potential in the sense that

Vo = (u,v).

Since F' is analytic, the level curves of ¢ are orthogonal to the level
curves of ¢. Since ¢ is a velocity potential the level curves of ¢ are
orthogonal to (u,v). Therefore the level curves of i are parallel to
(u,v) so are integral curves of the vector field (u,v). They are called
particle paths and also streamlines.

Example 1.1. The simplest flow has F(z) = constant and zero veloc-
1ty.

Example 1.2. The next simplest flow has complez potential F(z) = z.
Then F' = 1+ 0i so the velocity is (1,0). The flow is parallel to the
x-axis at constant speed. The streamlines are level sets of Im F = y.

Example 1.3. The neat simplest flow has complex potential F(z) = 2.
The streamlines are the level sets of Im F' = 2xy. They are hyperbolas
with asymptotes the x and y axes. The flow is parallel to both the x
and the y-azes.

Example 1.4. The example F(z) = logz = log|z| + i argz yields
interesting flows. F' is not defined at the origin and is only defined up
to additive constants of 2mwin. But the velocity
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1s independent of the additive constant. The stream lines are the level
sets of Im ' = arg z so are rays through the origin. The flow is outward
from the origin. The speed is |F'| = 1/r. The outward flux through
every circle centered at the origin is 2. The flow is a source of strength
2w at the origin. The divergence of the flow is 2w times the Dirac delta
at the origin. The fluid equations are not satisfied at that point.

Example 1.5. The potential F' = ilog z The streamlines are the level
sets of Im F' = log |z|. The streamlines are circles through the origin.
This is a swirling flow. The speed is |F'| = 1/r. The circulation around
any circle through the origin is equal to 2w. The curl of the flow is equal
to 21 times the Dirac delta at the origin. The fluid equations are not
satisfied at that point.

2. FLOWS PAST THE BOUNDARY OF A HALF SPACE.

Seek flow in the upper half space {y > 0} that is tangent to the bound-
ary. It represents flow past the z-axis that bounds the flow domain.

The second third and fourth flows of the last section are such flows. Lin-

ear combinations yield nontrivial examples that are all distinct. There

are even more.

Example 2.1. Consider the flow with potential

1 T — 1y

F(z) = - = —=
( ) ~ .TQ + y2

The x azis is a level set Im F' = 0 so is a stream line.

The streamlines are the curves Im(1/z) = constant. Since 1/z preserves
lines and circles, the streamlines are lines or circles.

Exercise 2.2. Show that the streamlines are circles whose diameters
lie on the y-axis. And the circles are tangent to the x-axis at the origin.

This speed |F'| = 1/|z|? diverges as one approaches the origin. The ve-
locity on the z axis is equal to —1/z* < 0. The fluid between two circles
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swirls counterclockwise and squeezes through at the origin while accel-
erating to infinitely large velocity. A finite volume squeezes through an
infinitesimal space in finite time by going infintly fast. The next result
shows that the flows with constant velocity parallel to the z-axis are
the only ones with bounded velocity.

Theorem 2.3. Suppose that F(z) = ¢+ 11 is analytic and in {y > 0},
continuously differentiable in {y > 0}, and, with F'(2) parallel to the x-
azis wheny = 0. If F' is uniformly bounded in {y > 0}, then F' = az+b
for somea € R, b e C.

Proof. The z-axis is a particle path hence a level curve of ¥. Denote
by ¢ the value of ¥ on this axis.

Then, F' — ic is real on the z axis, so reflects to an entire function.
Differentiating one finds that F” is entire and is symmetric about the
x-axis so is bounded everywhere since it is bounded in the upper half
plane.

Liouville’s Theorem implies that F” is constant. Denote that constant
by a. Then F'—az has vanishing derivative so F' = az+b with constants
a,b.

Since F’ = @ must be parallel to the 2-axis, a must be real. 0

3. FLOW IN CORNERS

Example 1.3 is a classic flow is defined in the positive quadrant ) :=
{(z,y) : ©* > 0,y > 0} whose closure is denoted Q := {z > 0,y >
0}. The complex potential is F'(z) = 2? has streamlines equal to the
hyperbolas zy = constant and the flow is tangent to the boundary
curves that are the x and y axes. This gives a flow that turns through
ninety degrees. However, the velocity |F'(z)| = 2|z| diverges to infinity
as z — oo and one is tempted to reject the flow as unphysical and to
search for a flow that turns the corner and has bounded velocities. No
such flow exists.

Theorem 3.1. Suppose that F is analytic in Q) and continuously dif-
ferentiable in Q \ 0. Suppose in addition that the fluid velocity is tan-
gent to the bounding curves and is uniformly bounded in Q). Then
F = constant.

Proof. On the boundary curve with y = 0 the velocity F’ is tangent
to the boundary so real. Therefore imaginary part 1 is constant on
this boundary. Call that constant c. The function F'—ic has vanishing
imaginary part on the real axis so by reflection extends to an analytic
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function in the right half space x > 0 with bounded velocity and flow
tangent to x = 0. The theorem of the preceding section implies that
F=az+0.

The corresponding velocity is therefore a constant vector field that is
tangent to both the z and y axes. The constant vector must vanish so
F'=0 0

In support of the solution z? I offer two arguments. The fist and most
telling is that the potential 22 accurately describes flow near a corner as
the example of flow over a semicircle shows. In that case the complex
potential near the right angle corners has Taylor expansion a(z — zy)? +
higher order terms. This shows that the quadratic potential gives a
good approximation near the corner,

F' =2a(z — ) + O]z — %]?) .

The second is that if F'is a potential for a flow tangent to the bound-
aries of @ then the same is true of F'(0z) for any o > 0. The problem
is dilation invariant. If would be natural to seek potentials that were
invariant in the sense that for some function ¢(o) one had

F(oz) = c(o) F(z).

In the homework, you showed that this implies that F'(z) is a homoge-
neous function of z. For Q) that selects solutions z?" with 1 < n € N.
The solution 22 is the solution of slowest growth from this list.

Exercise 3.2. Show that if 0 = 27 /n with even integer n > 2, then
an analogous reflection arqgument proves that there are no flows in the
angular sector 0 < arg z < 6 with bounded velocities tangent to the two
sides.

The case of § = 27/n, for n > 3 and odd as well as angles that are
irrational multiple of 27 require a different proof. Nevertheless, for
those cases too, there are no flows with bounded velocities.

Exercise 3.3. Suppose that 0 < 8 < w. Show that there is no analytic
F in the angular sector S := {0 < argz < 0} with F' uniformly
bounded, continuous in S \ 0 and with Vu tangent to the bounding
lines. Hint. Use a conformal mapping to transport the flow from the
sector to a half plane. Then use the half plane Theorem and pull back.

Exercise 3.4. Suppose that F' is analytic in the wedge 0 < argz < A
where A < m and the branch of arg takes values in | — w,w[. Suppose
in addition that for any o > 0,

F(oz) = c(o)F, (1)



for a suitable real c(o) depending on o.

i. Show that if o and T are two positive constants then c(or) =
c(o)e(r).

ii. Show that c is a differentiable function on ]0,00[. Hint. Consider
a single fized z.

iii. Show that F is a homogeneous function of z. Hint. Use real
logarithms to nearly determine c(o).

iv. Show an analytic F on the wedge that satisfies (1) if and only if
it 1s of the form bz* for some real o and complex b. Hint. Read the
earlier homework problem identifying analytic functions homogeneous
of degree n with n integer.

Exercise 3.5. Continuation of the preceding problem. Find all flows
in the wedge whose flow is parallel to the bounding lines and satisfies
the symmetry (1) from the preceding assignment. Hint. Use the result
from that problem. Discussion. The flow velocity is bounded at the
corner but the derivatives of the velocity are unbouded at the corner.
The case of A = /4 does not have this divergence.

Exercise 3.6. Starting with flow in the unit disk swirling about the
origin, find a swirling flow in the upper half disk so that the flow swirls
about the point midway between the circle center and the circumference.
Hint. Map the domains. Then arrange that the point 0 4 /2 goes to
the center by performing an additional self map of the disk. The self
maps of the disk were given in class.

Exercise 3.7. Continuation. Show that near the corners of the half
disk the flow resembles the flow with complex potential z* in a quadrant.
Hint. Find the leading term in the Taylor expansion of the complex
potential at the corner. The potential of the transformed problem is
the transform of the original potential.

Exercise 3.8. i. For integer n > 1 show that the irrotational, incom-
pressible, planar fluid flow with complex potential F(z) = 2™ is tangent
to the boundary of the wedge 0 < argz < 2mw/n and each of its the
wedges obtained by rotating by k2w /n with k € Z.

ii. Sketch the streamlines. Hint. The streamlines satisfy Im 2" = c.
So z belongs to the image of a {Imw = ¢} by the appropriate branch
of z = w!/™.

iii. When n is even, show that the flow is tangent to the boundary of
{y > 0} and also to the boundary of the positive quadrant Q.



4. NO FLOWS IN BOUNDED JORDAN DOMAINS

The swirling flow equal to V@ has streamlines that are circles with
center at the origin. This yields flows on the annular regions r < |z| <
R. Tt is rather remarkable that no such flows can exist on the domains
that are bounded by nice Jordan curves.

Theorem 4.1. Suppose that € is a bounded open set that is the inte-
rior of a continuously differentiable Jordan curve. Then the only con-
tinuously differenentiable incompressible, irrotational flows on £ whose
velocity 1s tangent to the boundary are those with velocity equal to zero.

Proof. Write F' = ¢ + i1p. The velocity is tangent to the boundary
so the boundary is either a single streamline or a family of streamlines
separated by stagnation points. Since 1 is constant on each streamline
it follows from the continuity of ¥ that v is constant on the boundary.

Then v is harmonic in € and constant on 02 so by uniqueness for the
Dirichlet problem, v is constant in 2. The Cauchy-Riemann equations
imply that V¢ = 0 and therefore that ¢ is also constant. U

This theorem shows that the swirl in Exercise 3.6 is essential. The
corresponding flows have curl equal to a Dirac delta at the center of
the swirl. Theorem 4.1 demands that the curl vanishes throughout 2.



