Image of Spheres by Invertible M

Abstract This note presents a solution of the following problem which avoids conformal matrices and polar decomposition.

Problem. Show that the image of a sphere by an invertible linear transformation on \mathbb{R}^N is an ellipsoid. Find an algorithm to compute the lengths and directions of the principal axes.

1 Scalar product.

Denote the standard scalar product of vectors in \mathbb{R}^n by

$$\langle x , y \rangle = \sum x_i y_i.$$

Vectors x and \tilde{x} are **orthogonal** if and only if $\langle x, \tilde{x} \rangle = 0$. An **orthonormal** basis for \mathbb{R}^n is a set of mutually orthogonal unit vectors $\mathbf{e}_1, \ldots, \mathbf{e}_n$.

2 Transposes.

Suppose that A_{ij} is an $n \times n$ real matrix. The **transpose** A^t of A is defined by

$$(A^t)_{ij} := A_{ji}$$

The matrix of the transpose is the matrix of A flipped in the diagonal.

Example 2.1.

$$\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}^t = \begin{pmatrix} 1 & 3 \\ 2 & 4 \end{pmatrix}.$$

Proposition 2.2. For all vectors x and y, $n \times n$ matrices A and B, and real numbers α ,

i. $(A + B)^t = A^t + B^t$, ii. $(\alpha A)^t = \alpha A^t$, iii. $(AB)^t = B^t A^t$, iv. $\langle Ax, y \rangle = \langle x, A^t y \rangle$.

3 Positive symmetric matrices.

Definition 3.1. A symmetric real matrix R is one for which $R_{ij} = R_{ji}$ for all i, j. Equivalently $R = R^t$.

It is a fundamental fact that for every symmetric matrix there is an orthonormal basis $\mathbf{e}_1, \mathbf{e}_2, \ldots, \mathbf{e}_n$ for \mathbb{R}^n consisting of eigenvectors of R,

$$R \mathbf{e}_j = \lambda_j \mathbf{e}_j, \qquad j = 1, \dots n.$$

Expressing an arbitrary vector x in this basis yields

$$x = \sum \alpha_j \mathbf{e}_j, \qquad \alpha_j = \langle x, \mathbf{e}_j \rangle.$$

Then,

$$Rx = \sum \alpha_j R \mathbf{e}_j = \sum \alpha_j \,\lambda_j \,\mathbf{e}_j \,.$$

The coordinate α_i in the basis \mathbf{e}_i is multiplied by λ_i .

Definition 3.2. A symmetric real R is **positive** when all the eignevalues are strictly positive.

Proposition 3.3. A symmetric matrix R is positive if and only if for all $x \neq 0$, $\langle Rx, x \rangle > 0$.

Proof. Compute in an orthonormal basis of eigenvectors,

$$Rx = R(\sum \alpha_j \mathbf{e}_j) = \sum \alpha_j R \mathbf{e}_j = \sum \alpha_j \lambda_j \mathbf{e}_j.$$

Then compute

$$\langle Rx, x \rangle = \left\langle \sum \alpha_j \lambda_j \mathbf{e}_j, \sum \alpha_k \mathbf{e}_k \right\rangle = \sum \alpha_j \alpha_k \lambda_j \langle \mathbf{e}_j, \mathbf{e}_k \rangle = \sum \lambda_j \alpha_j^2$$

The proposition follows.

Proposition 3.4. If M is invertible then $M M^t$ is a positive symmetric matrix.

Proof. Compute,

$$(MM^t)^t = (M^t)^t M^t = MM^t,$$

proving symmetry.

For $x \neq 0$,

$$\langle M M^t x, x \rangle = \langle M^t x, M^t x \rangle = ||M^t x||^2 > 0,$$

proving positivity.

4 Image of a ball by an invertible *M*.

Theorem 4.1. If M is an invertible linear transformation denote by \mathbf{e}_j and $\lambda_j > 0$ an orthonormal basis of eigenvectors of $M M^t$ and the corresponding eigenvalues. Then, the image of the unit sphere $\{||x|| = 1\}$ by M is the ellipsoid with principal axes of length $2/\sqrt{\lambda_j}$ along the directions \mathbf{e}_j .

Proof. The image of the unit sphere is the set of vectors y = Mx with ||x|| = 1. Write $x = M^{-1}y$. The y are characterized by the equation $||M^{-1}y||^2 = 1$. Compute

$$\|M^{-1}y\|^2 = \left\langle M^{-1}y, \, M^{-1}y \right\rangle = \left\langle (M^{-1})^t M^{-1}y, \, y \right\rangle.$$

One has,

$$(M^{-1})^t M^{-1} = (MM^t)^{-1}.$$

Therefore, the vectors \mathbf{e}_j are eigenvectors of $(M^{-1})^t M^{-1}$ with eigenvalue λ_j^{-1} . In the basis \mathbf{e}_j with $y = \sum \beta_j \mathbf{e}_j$ the image of the unit sphere is given by

$$||M^{-1}y||^2 = \sum \frac{\beta_j^2}{\lambda_j} = 1, \qquad \sum \beta_j^2 = 1.$$

In the coordinates β_j one has (by definition of ellipsoid) an ellipsoid with axes along the coordinate axes and of length $2/\sqrt{\lambda_j}$.

Since the coordinate axes in the β coordinates are the directions \mathbf{e}_j in the original coordinates, this completes the proof.

Example. Compute the image of the unit circle by the Jacobian matrix

$$J = \begin{pmatrix} 2 & 1 \\ 2 & -1 \end{pmatrix}$$

from class.

Solution. Compute

$$J J^t = \begin{pmatrix} 2 & 1 \\ 2 & -1 \end{pmatrix} \begin{pmatrix} 2 & 2 \\ 1 & -1 \end{pmatrix} = \begin{pmatrix} 5 & 3 \\ 3 & 5 \end{pmatrix}$$

The eigenvalues are the roots λ of,

$$0 = \det \begin{pmatrix} 5 - \lambda & 3 \\ 3 & 5 - \lambda \end{pmatrix} = (5 - \lambda)^2 - 9 = ((5 - \lambda) + 3)(5 - \lambda) - 3)).$$

The roots are $\lambda = 5 \pm 3$. Eigenvalues and unit eigenvectors are

$$\lambda_1 = 2$$
, $\mathbf{e}_1 = (1/\sqrt{2}, -1/\sqrt{2})$, $\lambda_2 = 8$, $\mathbf{e}_2 = (1/\sqrt{2}, 1/\sqrt{2})$.

The image is the ellipse with major axis along the direction (1, -1) with length $2/\sqrt{2}$ and minor axis along the direction (1, 1) and length $2/\sqrt{8}$.