Image of Spheres by Invertible M

Abstract

This note presents a solution of the following problem which avoids conformal matrices and polar decomposition. Problem. Show that the image of a sphere by an invertible linear transformation on \mathbb{R}^{N} is an ellipsoid. Find an algorithm to compute the lengths and directions of the principal axes.

1 Scalar product.

Denote the standard scalar product of vectors in \mathbb{R}^{n} by

$$
\langle x, y\rangle=\sum x_{i} y_{i} .
$$

Vectors x and \widetilde{x} are orthogonal if and only if $\langle x, \widetilde{x}\rangle=0$. An orthonormal basis for \mathbb{R}^{n} is a set of mutually orthogonal unit vectors $\mathbf{e}_{1}, \ldots, \mathbf{e}_{n}$.

2 Transposes.

Suppose that $A_{i j}$ is an $n \times n$ real matrix. The transpose A^{t} of A is defined by

$$
\left(A^{t}\right)_{i j}:=A_{j i} .
$$

The matrix of the transpose is the matrix of A flipped in the diagonal.
Example 2.1.

$$
\left(\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right)^{t}=\left(\begin{array}{ll}
1 & 3 \\
2 & 4
\end{array}\right)
$$

Proposition 2.2. For all vectors x and $y, n \times n$ matrices A and B, and real numbers α,
i. $(A+B)^{t}=A^{t}+B^{t}$,
ii. $(\alpha A)^{t}=\alpha A^{t}$,
iii. $(A B)^{t}=B^{t} A^{t}$,
iv. $\langle A x, y\rangle=\left\langle x, A^{t} y\right\rangle$.

3 Positive symmetric matrices.

Definition 3.1. A symmetric real matrix R is one for which $R_{i j}=R_{j i}$ for all i, j. Equivalently $R=R^{t}$.

It is a fundamental fact that for every symmetric matrix there is an orthonormal basis $\mathbf{e}_{1}, \mathbf{e}_{2}, \ldots, \mathbf{e}_{n}$ for \mathbb{R}^{n} consisting of eigenvectors of R,

$$
R \mathbf{e}_{j}=\lambda_{j} \mathbf{e}_{j}, \quad j=1, \ldots n .
$$

Expressing an arbitrary vector x in this basis yields

$$
x=\sum \alpha_{j} \mathbf{e}_{j}, \quad \alpha_{j}=\left\langle x, \mathbf{e}_{j}\right\rangle .
$$

Then,

$$
R x=\sum \alpha_{j} R \mathbf{e}_{j}=\sum \alpha_{j} \lambda_{j} \mathbf{e}_{j}
$$

The coordinate α_{j} in the basis \mathbf{e}_{j} is multiplied by λ_{j}.
Definition 3.2. A symmetric real R is positive when all the eignevalues are strictly positive.

Proposition 3.3. A symmetric matrix R is positive if and only if for all $x \neq 0,\langle R x, x\rangle>0$.

Proof. Compute in an orthonormal basis of eigenvectors,

$$
R x=R\left(\sum \alpha_{j} \mathbf{e}_{j}\right)=\sum \alpha_{j} R \mathbf{e}_{j}=\sum \alpha_{j} \lambda_{j} \mathbf{e}_{j} .
$$

Then compute

$$
\langle R x, x\rangle=\left\langle\sum \alpha_{j} \lambda_{j} \mathbf{e}_{j}, \sum \alpha_{k} \mathbf{e}_{k}\right\rangle=\sum \alpha_{j} \alpha_{k} \lambda_{j}\left\langle\mathbf{e}_{j}, \mathbf{e}_{k}\right\rangle .=\sum \lambda_{j} \alpha_{j}^{2}
$$

The proposition follows.
Proposition 3.4. If M is invertible then $M M^{t}$ is a positive symmetric matrix.

Proof. Compute,

$$
\left(M M^{t}\right)^{t}=\left(M^{t}\right)^{t} M^{t}=M M^{t}
$$

proving symmetry.
For $x \neq 0$,

$$
\left\langle M M^{t} x, x\right\rangle=\left\langle M^{t} x, M^{t} x\right\rangle=\left\|M^{t} x\right\|^{2}>0
$$

proving positivity.

4 Image of a ball by an invertible M.

Theorem 4.1. If M is an invertible linear transformation denote by \mathbf{e}_{j} and $\lambda_{j}>0$ an orthonormal basis of eigenvectors of $M M^{t}$ and the corresponding eigenvalues. Then, the image of the unit sphere $\{\|x\|=1\}$ by M is the ellipsoid with principal axes of length $2 / \sqrt{\lambda}_{j}$ along the directions \mathbf{e}_{j}.

Proof. The image of the unit sphere is the set of vectors $y=M x$ with $\|x\|=1$. Write $x=M^{-1} y$. The y are characterized by the equation $\left\|M^{-1} y\right\|^{2}=1$. Compute

$$
\left\|M^{-1} y\right\|^{2}=\left\langle M^{-1} y, M^{-1} y\right\rangle=\left\langle\left(M^{-1}\right)^{t} M^{-1} y, y\right\rangle
$$

One has,

$$
\left(M^{-1}\right)^{t} M^{-1}=\left(M M^{t}\right)^{-1}
$$

Therefore, the vectors \mathbf{e}_{j} are eigenvectors of $\left(M^{-1}\right)^{t} M^{-1}$ with eigenvalue λ_{j}^{-1}. In the basis \mathbf{e}_{j} with $y=\sum \beta_{j} \mathbf{e}_{j}$ the image of the unit sphere is given by

$$
\left\|M^{-1} y\right\|^{2}=\sum \frac{\beta_{j}^{2}}{\lambda_{j}}=1, \quad \sum \beta_{j}^{2}=1
$$

In the coordinates β_{j} one has (by definition of ellipsoid) an ellipsoid with axes along the coordinate axes and of length $2 / \sqrt{\lambda}{ }_{j}$.
Since the coordinate axes in the β coordinates are the directions \mathbf{e}_{j} in the original coordinates, this completes the proof.

Example. Compute the image of the unit circle by the Jacobian matrix

$$
J=\left(\begin{array}{cc}
2 & 1 \\
2 & -1
\end{array}\right)
$$

from class.
Solution. Compute

$$
J J^{t}=\left(\begin{array}{cc}
2 & 1 \\
2 & -1
\end{array}\right)\left(\begin{array}{cc}
2 & 2 \\
1 & -1
\end{array}\right)=\left(\begin{array}{ll}
5 & 3 \\
3 & 5
\end{array}\right)
$$

The eigenvalues are the roots λ of,

$$
\left.\left.0=\operatorname{det}\left(\begin{array}{cc}
5-\lambda & 3 \\
3 & 5-\lambda
\end{array}\right)=(5-\lambda)^{2}-9=((5-\lambda)+3)(5-\lambda)-3\right)\right)
$$

The roots are $\lambda=5 \pm 3$. Eigenvalues and unit eigenvectors are

$$
\lambda_{1}=2, \quad \mathbf{e}_{1}=(1 / \sqrt{2},-1 / \sqrt{2}), \quad \lambda_{2}=8, \quad \mathbf{e}_{2}=(1 / \sqrt{2}, 1 / \sqrt{2}) .
$$

The image is the ellipse with major axis along the direction $(1,-1)$ with length $2 / \sqrt{2}$ and minor axis along the direction $(1,1)$ and length $2 / \sqrt{8}$.

