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Neumann Problems, Insulator Boundary Condition

Summary. If one knows a conformal map of a domain G to the upper
half space, then steady state temperatures can be computed when the
boundary consists of two or three intervals exactly one of which is
insulated and each of the others is at constant temperature.

1. Introduction

This note uses complex variables to solve by explicit formulas some
mixed boundary value problems for harmonic functions. Harmonic
functions represent steady state temperature distributions. The heat
current is given by

J := −κ gradu

with conductivity κ assumed to be constant.

Heat flow is studied in a domain G. On parts of the boundary, the tem-
perature is assigned. In practice this corresponds to being in contact
with a heat or cooling device. On intervals where the assigned steady
state temperature is constant this can be maintained by contact with
a large constant temperature bath.

Part of the boundary is assumed to be insulated. On such parts the
heat current has vanishing component in the direction of the normal
vector. This hold if and only if n · gradu = 0. Equivalently the normal
derivative satisfies the Neumann boundary condition

∂u

∂n
= 0 .

2. Two boundary intervals

The first class of problems that we discuss have part of the boundary
at one fixed temperature T and the rest of the boundary insulated.
An example is the freezer compartment of a refrigerator. Like that
example, it is reasonable to think that over a long period of time, the
temperature T will invade the entire region and the steady state solu-
tion will be at constant temperature T , The constant function u = T
is harmonic, assumes the boundary value T at the fixed temperature
parts of the boundary, and has vanishing normal derivative at the insu-
lated parts. It is a solution of boundary value problem that is expected
to describe the steady state. The mathematical difficulty is to show
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that this is the only bounded solution. A beautiful application of the
methods of complex analysis proves uniqueness in pleasingly rich set of
circumstances.

The first example is heat flow in the upper half space G := {Im z > 0}.
The boundary segment on the positive real axis is held at temperature
T . The boundary segment on the negative real axis insulated. The
insulated segment is indicated by a thick line in the figure.

G

u = Tu_y = 0

Theorem 2.1. The only bounded harmonic function in G that is con-
tinuous up to the strictly positive real axis and continuous differentiable
up to the strictly negative real axis and satisfies the boundary conditions
in the figure is the function u = T .

Proof. Only uniqueness needs to be proved. If there were two solutions
u1 and u2 then the difference u := u1 − u2 is a solution with T = 0. It
suffices to show that the only bounded solution with T = 0 is u = 0.

Since the domain G is simply connected, there is a harmonic conjugate
v so F = u+ iv is analytic in G. The Cauchy-Riemann equation

∂v

∂x
= −∂u

∂y
(2.1)

shows that along the negative real axis, vx = 0 so v is constant on
the negative real axis. Adding a constant to v one has v = 0 on the
negative real axis. Then F is real valued on R \ 0.

The Schwartz Reflection Principal implies that the function equal to F
in the upper half plane and F (z) in the lower half plane is analytic in
C \ 0. Slightly abusing notation we denote this analytically continued
function as F .

The function F has bounded real part and an isolated singularity at
0. It follows that the singularity is removable and F extends to an
entire function, still denoted F . The extended function is entire with
bounded real part so Liouville’s theorem, as in the proof of uniqueness
of the Dirichlet problem, implies that F is constant.
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Therefore, u = ReF is constant. Since u = 0 on the positive real axis,
it follows that u = 0 everywhere. �

3. Conformal transformation of the Neumann condition

For the Dirichlet problem, one maps one domain to another by a
conformal mapping, the Dirichlet boundary conditions in one domain
are transported to corresponding Dirichlet boundary conditions in the
transformed domain. In this way solving in a half space for piecewise
constant data transfers to solutions in any domain that can be mapped
to the half space.

The same is true for boundary value problems involving insulators. The
important observation is that if one can solve on one domain G1 with
insulator section Γ1 ⊂ ∂G and there is conformal mapping to ζ = f(z)
from G1 → G2 taking Γ1 → Γ2 ⊂ ∂G, then u(ζ) satisfies the insulator
boundary condition on Γ2 if and only if u(ζ(z)) satisfies the insulator
boundary condition on Γ1. This is so because f maps the boundary
direction to G1 to the boundary direction on G2. Conformality implies
that it maps the normal direction to normal direction also. Therefore
normal derivative equal to zero is transported by the mapping.

In this way the preceding Theorem shows that on essentially arbitrary
simply connected domains, the unique steady temperature with one
insulator and one Dirichlet temperature T is the constant function
u = T .

Example 3.1. The map ζ = z2 transforms the problem

u=T

u_x=0

G

to the problem in the earlier figure.

4. The U shaped domain insulated at the bottom

The point of departure is the problem summarized by the figure
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u_y = 0

u = T_1u = T_2

G

This problem is solved by inspection in science courses as follows. Con-
sider the steady temperature distribution between two vertical lines at
different constant temperatures. The temperature u = ax+ b is linear
in x and the heat current is horizontal.

Therefore if one inserts a horizontal boundary between the lines to
make a U-shaped region, the heat flow is tangent to the new boundary
segment. Therefore the Neumann boundary condition is satisfied on
the horizontal boundary. In this way the boundary value problem of
the figure is solved by a harmonic function u = ax+ b.

This solution can be found by purely complex methods as follows. De-
note by u a bounded harmonic solution. Since G is simply connected
there is a harmonic conjugate v and associated analytic F = u + iv.
The Cauchy-Riemann equation (2.1) implies that v is constant on the
insulated boundary. Adding a constant to v one may assume that
v = 0 on this boundary. Then F is real at this boundary segment.
Schwartz reflection yields an analytic function, still denoted F , on the
whole strip between the two vertical lines. The real part of that F is
bounded and harmonic on the region between the lines and equal to
Tj on the jth boundary line. It follows from the study of the Dirichlet
Problem that u = ax+ b.

5. The sin z map

The map ez maps the half strip {0 < y < π , −∞ < x < 0} conformally
to the interior of the upper half of the unit disk. Then a linear fractional
transformation maps to the upper half space. In this way one can find
a mapping from the U domain in {0 < y , −π/2 < x < π/2} to the
upper half space and the insulated region on the x-axis to ] − 1, 1[.
That mapping is equal to sin z.

This mapping allows one to solve the problem indicated in the next
figure.
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−1

T_1T_2 u_y = 0

G

1

The bounded harmonic function u solves this problem if and only if
u(sin z) is the unique bounded solution of the problem in the U-domain
in −π/2 < x < π/2.

Theorem 5.1. For the upper half space problem indicated by the above
figure with insulator in −1 < x < 1 there is unique bounded harmonic
solution that extends smoothly to the boundary with the exception of the
points at the edge of the insulated segments. The solution is uniquely
determined by

u(sin z) = ax+ b , a(−π/2) + b = T1 , a(π/2) + b = T2 .

By translation in x and dilation in x, y one can solve the analogous up-
per half space problem where the insulated interval is arbitrary. There-
fore if G is any simply connected domain easily mapped to the halfspace
and the boundary is split into three intervals by two boundary points
P1 and P2 then the problem with temperatures on two of the intervals
and the third insulated is explicitly solvable. And there are uniqueness
results that go with it.

Example 5.2. In the U-domain one can solve the two temperatures
separated by an interval of insulator in arbitrary position. For example
on the left line or on the left line touching the bottom. Or overlapping
one of the corners. Or a subset of the bottom segment, .... etc.

Example 5.3. For G equal to the positive quadrant the mapping z2

allows one to solve the two temperatures separated by an interval of
insulator with insulator arbitrarily placed on the boundary.

Example 5.4. If G is the unit disk one can solve the two temperature
and one insulator problem for arbitrary interval of insulator on the
boundary.

Example 5.5. An example that is not treated this way is the boundary
value problem in the half space with an insulator interval and in the
complement the termperature is equal to zero except for a small interval
of width ε where the temperature is 1/ε. If one could solve, then passing
to the limit would give the Greens’ function and thereby solving for
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general boundary temperatures. However, on the x-axis there is only
the point at infinity where the temperature changes while the present
problem has two finite points with temperature change. No mapping
can transform one to the other.

Exercise 5.6. Use the sin z map to solve the problem sketched below.

T_2 T_1u_y = 0

G

1 2

Exercise 5.7. A domain occupies the upper half of the unit disk and
is insulated along the horizontal diameter. The left hand of the top is
at temperature -1 and the right hand side of the top at temperature 1.
Find the steady state temperature distribution. Hint. The solution is
an odd function of x and your solution should clearly show this.


